High-temperature optoelectronic synaptic devices based on 4H-SiC

被引:0
|
作者
Bu, Mingxuan [1 ,2 ,3 ,4 ]
Wang, Yue [1 ,2 ,3 ,4 ]
Ni, Zhenyi [1 ,2 ]
Li, Dongke [1 ,2 ,3 ,4 ]
Yang, Deren [1 ,2 ,3 ,4 ]
Pi, Xiaodong [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Univ, State Key Lab Silicon & Adv Semicond Mat, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Peoples R China
[3] Zhejiang Univ, Inst Adv Semicond, ZJU Hangzhou Global Sci & Technol Innovat Ctr, Hangzhou 311200, Peoples R China
[4] Zhejiang Univ, ZJU Hangzhou Global Sci & Technol Innovat Ctr, Zhejiang Prov Key Lab Power Semicond Mat & Devices, Hangzhou 311200, Peoples R China
基金
中国国家自然科学基金;
关键词
optoelectronic synaptic devices; 4H-SiC; synaptic plasticity; neuromorphic computing; high-temperature devices; PHOTOTRANSISTORS;
D O I
10.1007/s11432-024-4046-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Optoelectronic synaptic devices operating at high temperatures have application potential across many important fields, including the aerospace and defense industries. However, limited research exists on such devices. Herein, we fabricate 4H-SiC-based high-temperature optoelectronic synaptic devices that are capable of achieving diverse synaptic functionalities at temperatures as high as 600 K. The synaptic functionalities are realized for these devices through carrier capture and release of the deep-level defects introduced via electronic irradiation. A 3 x 3 array of high-temperature optoelectronic synaptic devices enables the image memory functions. A neural network model constructed using this array addresses the issue of color quantization. The optoelectronic synaptic devices thus developed are capable of high-temperature applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] 4H-SiC epitaxial growth for high-power devices
    Tsuchida, H
    Kamata, I
    Jikimoto, T
    Miyanagi, T
    Izumi, K
    SILICON CARBIDE AND RELATED MATERIALS - 2002, 2002, 433-4 : 131 - 136
  • [42] Investigation of Trenched and High Temperature Annealed 4H-SiC
    Banzhaf, C. T.
    Grieb, M.
    Trautmann, A.
    Bauer, A. J.
    Frey, L.
    SILICON CARBIDE AND RELATED MATERIALS 2013, PTS 1 AND 2, 2014, 778-780 : 742 - +
  • [43] 4H-SiC: a material for high temperature Hall sensor
    Robert, JL
    Contreras, S
    Camassel, J
    Pernot, J
    Neyret, E
    Di Cioccio, L
    Billon, T
    SENSORS AND ACTUATORS A-PHYSICAL, 2002, 97-8 : 27 - 32
  • [44] High Temperature Simulation of 4H-SiC Bipolar Circuits
    Elgabra, Hazem
    Singh, Shakti
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2015, 3 (03): : 302 - 305
  • [45] Evaluation of high-voltage 4H-SiC switching devices
    Wang, J
    Williams, BW
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1999, 46 (03) : 589 - 597
  • [46] High-temperature post-oxidation annealing on the low-temperature oxide/4H-SiC(0001)
    Kosugi, R
    Cho, WJ
    Fukuda, K
    Arai, K
    Suzuki, S
    JOURNAL OF APPLIED PHYSICS, 2002, 91 (03) : 1314 - 1317
  • [47] Performance and understanding of 4H-SiC electron devices at low temperature range
    Di Benedetto, Luigi
    Rinaldi, Nicola
    Licciardo, Gian Domenico
    Liguori, Rosalba
    Rubino, Alfredo
    May, Alexander
    Rommel, Mathias
    2024 INTERNATIONAL SEMICONDUCTOR CONFERENCE, CAS 2024, 2024, : 23 - 28
  • [49] High-temperature and high-speed oxidation of 4H-SiC by atmospheric pressure thermal plasma jet
    Hanafusa, Hiroaki
    Ishimaru, Ryosuke
    Higashi, Seiichiro
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2017, 56 (04)
  • [50] Temperature Sensors Based on AlN/4H-SiC Diodes
    Shin, Myeong-Cheol
    Kim, Dong-Hyeon
    Jung, Seong-Woo
    Schweitz, Michael A.
    Koo, Sang-Mo
    SCIENCE OF ADVANCED MATERIALS, 2021, 13 (07) : 1318 - 1323