Gut microbiota, blood metabolites, & pan-cancer: a bidirectional Mendelian randomization & mediation analysis

被引:0
作者
Luan, Biqing [1 ]
Yang, Yang [2 ]
Yang, Qizhi [1 ]
Li, Zhiqiang [1 ]
Xu, Zhihui [1 ]
Chen, Yaqin [1 ]
Wang, Meiting [1 ]
Chen, Wenlin [2 ]
Ge, Fei [1 ]
机构
[1] Kunming Med Univ, Affiliated Hosp 1, Dept Breast Surg, Kunming 650032, Yunnan, Peoples R China
[2] Peking Univ, Kunming Med Univ,Canc Hosp Yunnan, Yunnan Canc Hosp,Affiliated Hosp 3, Yunnan Key Lab Breast Canc Precis Med,Dept breast, Kunming, Yunnan, Peoples R China
来源
AMB EXPRESS | 2025年 / 15卷 / 01期
基金
中国国家自然科学基金;
关键词
Gut microbiota; Pan-cancer; Blood metabolites; Mendelian randomization; Mediation analysis; Metabolic pathway enrichment analysis; SUSCEPTIBILITY LOCI; LUNG-CANCER; ASSOCIATION; INSTRUMENTS; BIAS;
D O I
10.1186/s13568-025-01866-w
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We propose using Mendelian randomization analysis on GWAS data and MetaboAnalyst to model gut microbiota, metabolic pathways, blood metabolites, and cancer risk. We examined 473 gut microbiota, 205 pathways, 1400 metabolites, and 8 cancers. Results were validated through bidirectional two-sample Mendelian Randomization (MR), heterogeneity tests, and pathway enrichment, leading to a mediation pathway model. We identified 129 gut microbiota, 57 pathways, and 463 metabolites linked to cancer, and 34 significant plasma pathways. 15 microbiota, 8 pathways, and 58 metabolites implicated in multiple cancers. Eight plasma metabolic pathways are involved in the development of multiple types of cancer. Through Multivariate Mendelian Randomization (MVMR) and mediation analysis, we found 9 mediation pathways, offering novel targets and research directions for cancer pathogenesis and treatment.
引用
收藏
页数:17
相关论文
共 66 条
  • [1] Drugging the gut microbiota: toward rational modulation of bacterial composition in the gut
    Altamura, Fernando
    Maurice, Corinne F.
    Castagner, Bastien
    [J]. CURRENT OPINION IN CHEMICAL BIOLOGY, 2020, 56 : 10 - 15
  • [2] Mendelian Randomization
    Birney, Ewan
    [J]. COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2022, 12 (04):
  • [3] Bowden J, 2018, INT J EPIDEMIOL, V47, P1264, DOI [10.1093/ije/dyy101, 10.1093/ije/dyy265]
  • [4] Improving the accuracy of two-sample summary-data Mendelian randomization: moving beyond the NOME assumption
    Bowden, Jack
    Del Greco, Fabiola M.
    Minelli, Cosetta
    Zhao, Qingyuan
    Lawlor, Debbie A.
    Sheehan, Nuala A.
    Thompson, John
    Smith, George Davey
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2019, 48 (03) : 728 - 742
  • [5] Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator
    Bowden, Jack
    Smith, George Davey
    Haycock, Philip C.
    Burgess, Stephen
    [J]. GENETIC EPIDEMIOLOGY, 2016, 40 (04) : 304 - 314
  • [6] Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression
    Bowden, Jack
    Smith, George Davey
    Burgess, Stephen
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2015, 44 (02) : 512 - 525
  • [7] Relative abundance data can misrepresent heritability of the microbiome
    Bruijning, Marjolein
    Ayroles, Julien F.
    Henry, Lucas P.
    Koskella, Britt
    Meyer, Kyle M.
    Metcalf, C. Jessica E.
    [J]. MICROBIOME, 2023, 11 (01)
  • [8] Burgess S, 2017, EUR J EPIDEMIOL, V32, P377, DOI 10.1007/s10654-017-0255-x
  • [10] Mendelian Randomization Analysis With Multiple Genetic Variants Using Summarized Data
    Burgess, Stephen
    Butterworth, Adam
    Thompson, Simon G.
    [J]. GENETIC EPIDEMIOLOGY, 2013, 37 (07) : 658 - 665