Adaptive Fourier finite element method for three-dimensional time-harmonic Maxwell's equations in axisymmetric domains

被引:0
作者
Wang, Hao [1 ]
机构
[1] Anhui Normal Univ, Sch Math & Stat, Wuhu 241000, Peoples R China
基金
中国国家自然科学基金;
关键词
Time-harmonic Maxwell's equations; PML; Adaptive Fourier finite element method; Axisymmetric domains;
D O I
10.1007/s40314-024-03036-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to consider adaptive method for the time-harmonic Maxwell equations and their Perfectly Matched Layer (PML) equations in three-dimensional (3D) axisymmetric domains. The adaptive method is based on Fourier decomposition which reduces the 3D problems into a sequence of two-dimensional (2D) problems and each Fourier coefficient satisfies a system of equations on the meridian domain. A recovery type a posterior error estimator is proposed as the error estimator for time-harmonic Maxwell's equations. Numerical examples are presented to indicate the efficiency of the proposed error estimator and the corresponding adaptive method.
引用
收藏
页数:19
相关论文
共 33 条
[1]   Theoretical tools to solve the axisymmetric Maxwell equations [J].
Assous, F ;
Ciarlet, P ;
Labrunie, S .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2002, 25 (01) :49-78
[2]   A truncated Fourier/finite element discretization of the stokes equations in an axisymmetric domain [J].
Belhachmi, Z ;
Bernardi, C ;
Deparis, S ;
Hecht, F .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (02) :233-263
[3]   Antenna design for microwave hepatic ablation using an axisymmetric electromagnetic model [J].
Bertram, John M. ;
Yang, Deshan ;
Converse, Mark C. ;
Webster, John G. ;
Mahvi, David M. .
BIOMEDICAL ENGINEERING ONLINE, 2006, 5 (1)
[4]   Multigrid computation of axisymmetric electromagnetic fields [J].
Börm, S ;
Hiptmair, R .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2002, 16 (04) :331-356
[5]  
BRAMBLE JH, 1977, MATH COMPUT, V31, P94, DOI 10.1090/S0025-5718-1977-0431744-9
[6]  
Brenner SC, 2016, J SCI COMPUT, V68, P848, DOI 10.1007/s10915-015-0161-x
[7]   A recovery-based a posteriori error estimator for H(curl) interface problems [J].
Cai, Zhiqiang ;
Cao, Shuhao .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 296 :169-195
[8]   Surface-Localized Transmission Eigenstates, Super-resolution Imaging, and Pseudo Surface Plasmon Modes [J].
Chow, Yat Tin ;
Deng, Youjun ;
He, Youzi ;
Liu, Hongyu ;
Wang, Xianchao .
SIAM JOURNAL ON IMAGING SCIENCES, 2021, 14 (03) :946-975
[9]  
Ciarlet P, 2000, CR ACAD SCI I-MATH, V331, P293, DOI 10.1016/S0764-4442(00)01617-7
[10]   A mixed method for axisymmetric div-curl systems [J].
Copeland, Dylan M. ;
Gopalakrishnan, Jayadeep ;
Pasciak, Joseph E. .
MATHEMATICS OF COMPUTATION, 2008, 77 (264) :1941-1965