Enhanced fractional probabilistic self-organizing maps with genetic algorithm optimization (EF-PRSOM)

被引:0
作者
Safouan, Safaa [1 ]
El Moutaouakil, Karim [1 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Polydisciplinary Fac Taza, Lab Math & Data Sci, Taza 35000, Morocco
关键词
Fractional derivative; Probabilistic self-organizing map; ABC derivative; Genetic algorithm; Clustering; MODEL;
D O I
10.1007/s12065-025-01019-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Fractional derivatives offer an effective method for incorporating memory into systems, increasing efficiency for tasks that require long-term memory processes. They provide considerable advantages over classical derivatives, enabling deeper analysis of complex processes through effective access to underlying aspects. Leveraging these benefits, this paper introduces a new clustering approach, Enhanced Fractional Probabilistic Self-Organizing Map and Genetic Algorithm optimization. This approach addresses the problem of kernel locality and the challenges associated with selecting the parameter alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}. To determine the appropriate order of alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}, we implemented an efficient method using Genetic Algorithm optimization, enhancing clustering quality by considering model complexity, goodness of fit, and cluster separation. Furthermore, the optimized EF-PRSOM was compared to several clustering methods across multiple datasets using the Dunn index. Remarkably, EF-PRSOM consistently outperformed its counterparts across all metrics. Additionally, the optimized EF-PRSOM has the potential to be applied to various tasks, including image compression, where its effectiveness could be assessed using performance measures such as Peak Signal-to-Noise Ratio and Structural Similarity Index. This highlights the versatility of the proposed EF-PRSOM method across different applications.
引用
收藏
页数:23
相关论文
共 58 条
  • [1] Intelligent Local Search for an Optimal Control of Diabetic Population Dynamics
    Abdellatif E.O.
    Karim E.M.
    Hicham B.
    Saliha C.
    [J]. Mathematical Models and Computer Simulations, 2022, 14 (6) : 1051 - 1071
  • [2] Alam T, 2020, Arxiv, DOI [arXiv:2007.12673, 10.48550/arXiv.2007.12673, DOI 10.48550/ARXIV.2007.12673]
  • [3] Fractional differential equations with a Caputo derivative with respect to a Kernel function and their applications
    Almeida, Ricardo
    Malinowska, Agnieszka B.
    Monteiro, M. Teresa T.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (01) : 336 - 352
  • [4] Anderson D, 2004, Model selection and multi-model inference, V63, P10, DOI DOI 10.1007/B97636
  • [5] Probabilistic self-organizing map and radial basis function networks
    Anouar, F
    Badran, F
    Thiria, S
    [J]. NEUROCOMPUTING, 1998, 20 (1-3) : 83 - 96
  • [6] Applications of fractional calculus in computer vision: A survey
    Arora, Sugandha
    Mathur, Trilok
    Agarwal, Shivi
    Tiwari, Kamlesh
    Gupta, Phalguni
    [J]. NEUROCOMPUTING, 2022, 489 : 407 - 428
  • [7] Atangana A, 2016, Arxiv, DOI [arXiv:1602.03408, DOI 10.2298/TSCI160111018A]
  • [8] Fractional derivatives with no-index law property: Application to chaos and statistics
    Atangana, Abdon
    Gomez-Aguilar, J. F.
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 114 : 516 - 535
  • [10] Balachandran K., 2023, An introduction to fractional differential equations, P143, DOI [10.1007/978-981-99-6080-46, DOI 10.1007/978-981-99-6080-46]