Comparative analysis of the physiological and transcriptomic profiles reveals alfalfa drought resistance mechanisms

被引:0
|
作者
Chen, Fenqi [1 ]
Ha, Xue [1 ]
Ma, Ting [1 ]
Ma, Huiling [1 ]
机构
[1] Sino US Ctr Grazingland Ecosyst Sustainabil, Pratacultural Engn Lab Gansu Prov, Minist Educ, Coll Pratacultural Sci,Gansu Agr Univ,Key Lab Gras, Lanzhou 730070, Gansu, Peoples R China
来源
BMC PLANT BIOLOGY | 2024年 / 24卷 / 01期
关键词
Alfalfa; Physiology; Transcriptomics; Drought stress; PEG simulation; SUCROSE METABOLISM; OXIDATIVE STRESS; RESPONSES; PHOTOSYNTHESIS; GROWTH;
D O I
10.1186/s12870-024-05671-8
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background Drought stress is a major limiting factor that affects forage yields, and understanding the drought resistance mechanism of plants is crucial for improving crop yields in arid areas. Alfalfa (Medicago sativa L.) is the most important legume plant, mainly planted in arid and semi-arid areas. However, the adaptability of alfalfa to drought stress and its physiological and molecular mechanisms of drought resistance remains unclear. Results In this study, we analyzed the physiological and transcriptome responses of alfalfa cultivars with different drought resistances (drought-sensitive Gannong No. 3 (G3), drought-resistant Gannong No. 8 (G8), and strong drought-resistant Longdong (LD)) under drought stress at 0, 6, 12, and 24 h. LD had higher catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activities and a higher soluble protein content, lower malondialdehyde (MDA) content, a lower O(2)(<middle dot>- )production rate, and a lower H2O2 content than G8 and G3 (P < 0.05). The functional enrichment analysis, temporal expression pattern analysis, and weighted gene co-expression network analysis (WGCNA) of the differentially expressed genes (DEGs) showed phenylpropanoid biosynthesis, flavonoid biosynthesis, starch and sucrose metabolism, glycolysis/gluconeogenesis, glutathione metabolism, and biosynthesis of amino acid responses to drought stress in alfalfa. The differential expression of genes during phenylpropanoid biosynthesis, starch and sucrose metabolism, and the glutathione metabolism pathway was further studied, and it was speculated that PAL, COMT, 4CL, CCR, CAD, HXK, INV, SUS, WAXY, AGP, GST, and APX1 played important roles in the alfalfa drought stress response. Conclusions The aim of this study was to enhance alfalfa drought resistance by overexpressing positively regulated genes and knocking out negatively regulated genes, providing genetic resources for the subsequent molecular-assisted breeding of drought-resistant alfalfa crops.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Comparative physiological and transcriptomic analysis of two contrasting soybean genotypes reveals complex mechanisms involved in drought avoidance
    Li, Shengyou
    Yan, Chunjuan
    Cao, Yongqiang
    Wang, Changling
    Sun, Xugang
    Zhang, Lijun
    Wang, Wenbin
    Song, Shuhong
    CROP SCIENCE, 2024, 64 (02) : 788 - 802
  • [2] Comparative Physiological and Transcriptome Profiles Uncover Salt Tolerance Mechanisms in Alfalfa
    Li, Jiali
    Ma, Maosen
    Sun, Yanmei
    Lu, Ping
    Shi, Haifan
    Guo, Zhenfei
    Zhu, Haifeng
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [3] Comparative physiological and transcriptomic profiles reveal regulatory mechanisms of soft rot disease resistance in Amorphophallus spp.
    Wei, Huanyu
    Yang, Min
    Ke, Yanguo
    Liu, Jiani
    Chen, Zebin
    Zhao, Jianrong
    Zhao, Yongteng
    Huang, Feiyan
    Yu, Lei
    PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, 2022, 118
  • [4] Transcriptomic analysis reveals mechanisms for the different drought tolerance of sweet potatoes
    Liu, Enliang
    Xu, Linli
    Luo, Zhengqian
    Li, Zhiqiang
    Zhou, Guohui
    Gao, Haifeng
    Fang, Furong
    Tang, Jun
    Zhao, Yue
    Zhou, Zhilin
    Jin, Ping
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [5] Comparative physiological and transcriptomic analysis reveals salinity tolerance mechanisms in Sorghum bicolor (L.) Moench
    Jayan Ukwatta
    Isaiah Catalino M. Pabuayon
    Jungjae Park
    Junping Chen
    Xiaoqiang Chai
    Heng Zhang
    Jian-Kang Zhu
    Zhanguo Xin
    Huazhong Shi
    Planta, 2021, 254
  • [6] Comparative physiological and transcriptomic analysis reveals salinity tolerance mechanisms in Sorghum bicolor (L.) Moench
    Ukwatta, Jayan
    Pabuayon, Isaiah Catalino M.
    Park, Jungjae
    Chen, Junping
    Chai, Xiaoqiang
    Zhang, Heng
    Zhu, Jian-Kang
    Xin, Zhanguo
    Shi, Huazhong
    PLANTA, 2021, 254 (05)
  • [7] Comparative transcriptomic analysis reveals the molecular mechanisms related to oxytetracycline- resistance in strains of Aeromonas hydrophila
    Yu, Jing
    Ramanathan, Srinivasan
    Chen, Liangchuan
    Zeng, Fuyuan
    Li, Xiaoyan
    Zhao, Yiyang
    Lin, Ling
    Monaghan, Sean J.
    Lin, Xiangmin
    Pang, Huanying
    AQUACULTURE REPORTS, 2021, 21
  • [8] Comparative analysis of alfalfa (Medicago sativa L.) seedling transcriptomes reveals genotype-specific drought tolerance mechanisms
    Ma, Qiaoli
    Xu, Xing
    Wang, Wenjing
    Zhao, Lijuan
    Ma, Dongmei
    Xie, Yingzhong
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 166 : 203 - 214
  • [9] Comparative Transcriptomic Analysis of Root and Leaf Transcript Profiles Reveals the Coordinated Mechanisms in Response to Salinity Stress in Common Vetch
    Lin, Xiaoshan
    Wang, Qiuxia
    Min, Xueyang
    Liu, Wenxian
    Liu, Zhipeng
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (15)
  • [10] Integrative physiological, metabolomic, and transcriptomic analysis reveals the drought responses of two apple rootstock cultivars
    Xiaohan Li
    Yitong Liu
    Wei Hu
    Baoying Yin
    Bowen Liang
    Zhongyong Li
    Xueying Zhang
    Jizhong Xu
    Shasha Zhou
    BMC Plant Biology, 24