A prediction study on the occurrence risk of heart disease in older hypertensive patients based on machine learning

被引:0
作者
Si, Fei [1 ,2 ]
Liu, Qian [1 ,2 ]
Yu, Jing [1 ,2 ]
机构
[1] Lanzhou Univ, Dept Cardiol, Hosp 2, 82 Cuiyingmen, Lanzhou 730000, Peoples R China
[2] Lanzhou Univ, Clin Med Sch, 82 Cuiyingmen, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Hypertension; Heart Disease; Machine Learning; Risk Prediction; Older Patients; MODELS;
D O I
10.1186/s12877-025-05679-1
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
ObjectiveConstructing a predictive model for the occurrence of heart disease in elderly hypertensive individuals, aiming to provide early risk identification.MethodsA total of 934 participants aged 60 and above from the China Health and Retirement Longitudinal Study with a 7-year follow-up (2011-2018) were included. Machine learning methods (logistic regression, XGBoost, DNN) were employed to build a model predicting heart disease risk in hypertensive patients. Model performance was comprehensively assessed using discrimination, calibration, and clinical decision curves.ResultsAfter a 7-year follow-up of 934 older hypertensive patients, 243 individuals (26.03%) developed heart disease. Older hypertensive patients with baseline comorbid dyslipidemia, chronic pulmonary diseases, arthritis or rheumatic diseases faced a higher risk of future heart disease. Feature selection significantly improved predictive performance compared to the original variable set. The ROC-AUC for logistic regression, XGBoost, and DNN were 0.60 (95% CI: 0.53-0.68), 0.64 (95% CI: 0.57-0.71), and 0.67 (95% CI: 0.60-0.73), respectively, with logistic regression achieving optimal calibration. XGBoost demonstrated the most noticeable clinical benefit as the threshold increased.ConclusionMachine learning effectively identifies the risk of heart disease in older hypertensive patients based on data from the CHARLS cohort. The results suggest that older hypertensive patients with comorbid dyslipidemia, chronic pulmonary diseases, and arthritis or rheumatic diseases have a higher risk of developing heart disease. This information could facilitate early risk identification for future heart disease in older hypertensive patients.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Study on Machine Learning based Heart Disease Prediction Model
    Zhang, Shihan
    PROCEEDINGS OF 2023 4TH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE FOR MEDICINE SCIENCE, ISAIMS 2023, 2023, : 346 - 352
  • [2] An Approach with Machine Learning for Heart Disease Risk Prediction
    Jeribi, Fathe
    Kaur, Chamandeep
    Pawar, A. B.
    2023 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE, CSCI 2023, 2023, : 1474 - 1479
  • [3] Machine learning-based risk prediction of acute kidney disease and hospital mortality in older patients
    Wang, Xinyuan
    Xu, Lingyu
    Guan, Chen
    Xu, Daojun
    Che, Lin
    Wang, Yanfei
    Man, Xiaofei
    Li, Chenyu
    Xu, Yan
    FRONTIERS IN MEDICINE, 2024, 11
  • [4] Heart disease prediction based on external factors: A machine learning approach
    Tamal M.A.
    Islam M.S.
    Ahmmed M.J.
    Aziz M.A.
    Miah P.
    Rezaul K.M.
    International Journal of Advanced Computer Science and Applications, 2019, 10 (12): : 446 - 451
  • [5] Heart Disease Prediction based on External Factors: A Machine Learning Approach
    Tamal, Maruf Ahmed
    Islam, Md Saiful
    Ahmmed, Md Jisan
    Aziz, Md Abdul
    Miah, Pabel
    Rezaul, Karim Mohammed
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (12) : 446 - 451
  • [6] Accurate Prediction of Stroke for Hypertensive Patients Based on Medical Big Data and Machine Learning Algorithms: Retrospective Study
    Yang, Yujie
    Zheng, Jing
    Du, Zhenzhen
    Li, Ye
    Cai, Yunpeng
    JMIR MEDICAL INFORMATICS, 2021, 9 (11)
  • [7] Prediction of the risk of mortality in older patients with coronavirus disease 2019 using blood markers and machine learning
    Zhu, Linchao
    Yao, Yimin
    FRONTIERS IN IMMUNOLOGY, 2024, 15
  • [8] Heart Disease Risk Prediction using Machine Learning with Principal Component Analysis
    Reddy, Karna Vishnu Vardhana
    Elamvazuthi, Irraivan
    Abd Aziz, Azrina
    Paramasivam, Sivajothi
    Chua, Hui Na
    2020 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT AND ADVANCED SYSTEMS (ICIAS), 2021,
  • [9] Fusion-Based Machine Learning Architecture for Heart Disease Prediction
    Nadeem, Muhammad Waqas
    Goh, Hock Guan
    Khan, Muhammad Adnan
    Hussain, Muzammil
    Mushtaq, Muhammad Faheem
    Ponnusamy, Vasaki A. P.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 67 (02): : 2481 - 2496
  • [10] Machine Learning Techniques for Heart Disease Prediction: A Comparative Study and Analysis
    Rahul Katarya
    Sunit Kumar Meena
    Health and Technology, 2021, 11 : 87 - 97