Portfolio selection revisited

被引:2
作者
Shkolnik, Alex [1 ]
Kercheval, Alec [2 ]
Gurdogan, Hubeyb [3 ]
Goldberg, Lisa R. [4 ,5 ]
Bar, Haim [6 ]
机构
[1] Univ Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA
[2] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[4] Univ Calif Berkeley, Dept Econ & Consortium Data Analyt Risk, Berkeley, CA 94720 USA
[5] BlackRock Inc, Aperio, Sausalito, CA 94965 USA
[6] Univ Connecticut, Dept Stat, Storrs, CT 06269 USA
关键词
Mean-variance portfolio optimization; High dimensional covariance estimation; Principal component analysis; Factor models; Volatility ratio; James-Stein estimation; Shrinkage; COVARIANCE-MATRIX; MARKOWITZ; ARBITRAGE; OPTIMIZATION; ESTIMATOR; SHRINKAGE;
D O I
10.1007/s10479-024-06340-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In 1952, Harry Markowitz formulated portfolio selection as a trade-off between expected, or mean, return and variance. This launched a massive research effort devoted to finding suitable inputs to mean-variance optimization. The estimation problem is high dimensional and a factor model is at the core of many attempts. A factor model can reduce the number of parameters that need to be estimated to a manageable size, but these parameters may incorporate substantial, hidden estimation error. Recent analysis elucidates the nature of this error, identifies a mechanism by which it can corrupt optimization and provides a method for its mitigation. We explore this analysis here by illustrating how to improve the volatility ratio of large optimized portfolios, leading to superior portfolio selection.& lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{*}$$\end{document}
引用
收藏
页码:137 / 155
页数:19
相关论文
共 65 条
[1]  
Ang A., 2023, SHARPER LENS FACTORS
[2]  
Bai Jushan, 2008, Foundations and Trends in Econometrics, V3, P89, DOI 10.1561/0800000002
[3]   Approximate factor models with weaker loadings [J].
Bai, Jushan ;
Ng, Serena .
JOURNAL OF ECONOMETRICS, 2023, 235 (02) :1893-1916
[4]   An Open-Source Implementation of the Critical-Line Algorithm for Portfolio Optimization [J].
Bailey, David H. ;
de Prado, Marcos Lopez .
ALGORITHMS, 2013, 6 (01) :169-196
[5]  
Bayraktar MK, 2014, Barra US total market equity model for long-term investors
[6]   ON THE SENSITIVITY OF MEAN-VARIANCE-EFFICIENT PORTFOLIOS TO CHANGES IN ASSET MEANS - SOME ANALYTICAL AND COMPUTATIONAL RESULTS [J].
BEST, MJ ;
GRAUER, RR .
REVIEW OF FINANCIAL STUDIES, 1991, 4 (02) :315-342
[7]   Distributionally Robust Mean-Variance Portfolio Selection with Wasserstein Distances [J].
Blanchet, Jose ;
Chen, Lin ;
Zhou, Xun Yu .
MANAGEMENT SCIENCE, 2022, 68 (09) :6382-6410
[8]  
Blin J., 2022, HIST COMMERCIALLY AV, P1
[9]   Optimal Shrinkage-Based Portfolio Selection in High Dimensions [J].
Bodnar, Taras ;
Okhrin, Yarema ;
Parolya, Nestor .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 41 (01) :140-156
[10]  
Boyd S, 2024, J PORTFOLIO MANAGE, V50, P117