Machine learning based identification of an amino acid metabolism related signature for predicting prognosis and immune microenvironment in pancreatic cancer

被引:0
作者
Liu, Xiaohong [1 ,2 ,3 ]
Wang, Xing [1 ,2 ,3 ]
Ren, Jie [1 ,2 ,3 ]
Fang, Yuan [1 ,2 ,3 ]
Gu, Minzhi [1 ,2 ,3 ]
Zhou, Feihan [1 ,2 ,3 ]
Xiao, Ruiling [1 ,2 ,3 ]
Luo, Xiyuan [1 ,2 ,3 ]
Bai, Jialu [1 ,2 ,3 ]
Jiang, Decheng [1 ,2 ,3 ]
Tang, Yuemeng [1 ,2 ,3 ]
Ren, Bo [1 ,2 ,3 ]
You, Lei [1 ,2 ,3 ]
Zhao, Yupei [1 ,2 ,3 ]
机构
[1] Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Dept Gen Surg, Beijing 100023, Peoples R China
[2] Chinese Acad Med Sci, Key Lab Res Pancreat Tumor, Beijing 100023, Peoples R China
[3] Peking Union Med Coll Hosp, Natl Sci & Technol Key Infrastruct Translat Med, Beijing 100023, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Amino acid metabolism; Prognosis; Immune microenvironment; Pancreatic cancer; Machine-learning; SERINE; SURVIVAL; ARGININE;
D O I
10.1186/s12885-024-13374-4
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BackgroundPancreatic cancer is a highly aggressive neoplasm characterized by poor diagnosis. Amino acids play a prominent role in the occurrence and progression of pancreatic cancer as essential building blocks for protein synthesis and key regulators of cellular metabolism. Understanding the interplay between pancreatic cancer and amino acid metabolism offers potential avenues for improving patient clinical outcomes.MethodsA comprehensive analysis integrating 10 machine learning algorithms was executed to pinpoint amino acid metabolic signature. The signature was validated across both internal and external cohorts. Subsequent GSEA was employed to unveil the enriched gene sets and signaling pathways within high- and low-risk subgroups. TMB and drug sensitivity analyses were carried out via Maftools and oncoPredict R packages. CIBERSORT and ssGSEA were harnessed to delve into the immune landscape disparities. Single-cell transcriptomics, qPCR, and Immunohistochemistry were performed to corroborate the expression levels and prognostic significance of this signature.ResultsA four gene based amino acid metabolic signature with superior prognostic capabilities was identified by the combination of 10 machine learning methods. It showed that the novel prognostic model could effectively distinguish patients into high- and low-risk groups in both internal and external cohorts. Notably, the risk score from this novel signature showed significant correlations with TMB, drug resistance, as well as a heightened likelihood of immune evasion and suboptimal responses to immunotherapeutic interventions.ConclusionOur findings suggested that amino acid metabolism-related signature was closely related to the development, prognosis and immune microenvironment of pancreatic cancer.
引用
收藏
页数:21
相关论文
共 61 条
[1]   2-Oxoglutarate: linking TCA cycle function with amino acid, glucosinolate, flavonoid, alkaloid, and gibberellin biosynthesis [J].
Araujo, Wagner L. ;
Martins, Auxiliadora O. ;
Fernie, Alisdair R. ;
Tohge, Takayuki .
FRONTIERS IN PLANT SCIENCE, 2014, 5
[2]   Collagen Prolyl Hydroxylases Are Bifunctional Growth Regulators in Melanoma [J].
Atkinson, Aithne ;
Renziehausen, Alexander ;
Wang, Hexiao ;
Lo Nigro, Cristiana ;
Lattanzio, Laura ;
Merlano, Marco ;
Rao, Bhavya ;
Weir, Lynda ;
Evans, Alan ;
Matin, Rubeta ;
Harwood, Catherine ;
Szlosarek, Peter ;
Pickering, J. Geoffrey ;
Fleming, Colin ;
Sim, Van Ren ;
Li, Su ;
Vasta, James T. ;
Raines, Ronald T. ;
Boniol, Mathieu ;
Thompson, Alastair ;
Proby, Charlotte ;
Crook, Tim ;
Syed, Nelofer .
JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2019, 139 (05) :1118-1126
[3]   P4HA1/HIF1α feedback loop drives the glycolytic and malignant phenotypes of pancreatic cancer [J].
Cao, X. P. ;
Cao, Y. ;
Li, W. J. ;
Zhang, H. H. ;
Zhu, Z. M. .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2019, 516 (03) :606-612
[4]   Prolyl 4-hydroxylase P4HA1 Mediates the Interplay Between Glucose Metabolism and Stemness in Pancreatic Cancer Cells [J].
Cao, Xiaopeng ;
Cao, Yi ;
Zhao, Hui ;
Wang, Pengfei ;
Zhu, Ziman .
CURRENT STEM CELL RESEARCH & THERAPY, 2023, 18 (05) :712-719
[5]   Stomatin-like protein 2 induces metastasis by regulating the expression of a rate-limiting enzyme of the hexosamine biosynthetic pathway in pancreatic cancer [J].
Chao, Dang ;
Ariake, Kyohei ;
Sato, Satoko ;
Ohtsuka, Hideo ;
Takadate, Tatsuyuki ;
Ishida, Masaharu ;
Masuda, Kunihiro ;
Maeda, Shimpei ;
Miura, Takayuki ;
Mitachi, Katsutaka ;
Yu, Xun Jing ;
Fujishima, Fumiyoshi ;
Mizuma, Masamichi ;
Nakagawa, Kei ;
Morikawa, Takanori ;
Kamei, Takashi ;
Unno, Michiaki .
ONCOLOGY REPORTS, 2021, 45 (06)
[6]   Pancreatic cancer evolution and heterogeneity: integrating omics and clinical data [J].
Connor, Ashton A. ;
Gallinger, Steven .
NATURE REVIEWS CANCER, 2022, 22 (03) :131-142
[7]   FOLFIRINOX versus Gemcitabine for Metastatic Pancreatic Cancer [J].
Conroy, Thierry ;
Desseigne, Francoise ;
Ychou, Marc ;
Bouche, Olivier ;
Guimbaud, Rosine ;
Becouarn, Yves ;
Adenis, Antoine ;
Raoul, Jean-Luc ;
Gourgou-Bourgade, Sophie ;
de la Fouchardiere, Christelle ;
Bennouna, Jaafar ;
Bachet, Jean-Baptiste ;
Khemissa-Akouz, Faiza ;
Pere-Verge, Denis ;
Delbaldo, Catherine ;
Assenat, Eric ;
Chauffert, Bruno ;
Michel, Pierre ;
Montoto-Grillot, Christine ;
Ducreux, Michel .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 364 (19) :1817-1825
[8]   The Multicenter Cancer of Pancreas Screening Study: Impact on Stage and Survival [J].
Dbouk, Mohamad ;
Katona, Bryson W. ;
Brand, Randall E. ;
Chak, Amitabh ;
Syngal, Sapna ;
Farrell, James J. ;
Kastrinos, Fay ;
Stoffel, Elena M. ;
Blackford, Amanda L. ;
Rustgi, Anil K. ;
Dudley, Beth ;
Lee, Linda S. ;
Chhoda, Ankit ;
Kwon, Richard ;
Ginsberg, Gregory G. ;
Klein, Alison P. ;
Kamel, Ihab ;
Hruban, Ralph H. ;
He, Jin ;
Shin, Eun Ji ;
Lennon, Anne Marie ;
Canto, Marcia Irene ;
Goggins, Michael .
JOURNAL OF CLINICAL ONCOLOGY, 2022, 40 (28) :3257-+
[9]   L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity [J].
Geiger, Roger ;
Rieckmann, Jan C. ;
Wolf, Tobias ;
Basso, Camilla ;
Feng, Yuehan ;
Fuhrer, Tobias ;
Kogadeeva, Maria ;
Picotti, Paola ;
Meissner, Felix ;
Mann, Matthias ;
Zamboni, Nicola ;
Sallusto, Federica ;
Lanzavecchia, Antonio .
CELL, 2016, 167 (03) :829-+
[10]   Combination Therapy for the Treatment of Pancreatic Cancer [J].
Greenhalf, William ;
Thomas, Amy .
ANTI-CANCER AGENTS IN MEDICINAL CHEMISTRY, 2011, 11 (05) :418-426