Artificial intelligence support improves diagnosis accuracy in anterior segment eye diseases

被引:0
作者
Maehara, Hiroki [1 ,14 ]
Ueno, Yuta [2 ,14 ]
Yamaguchi, Takefumi [3 ,14 ]
Kitaguchi, Yoshiyuki [4 ,14 ]
Miyazaki, Dai [5 ,14 ]
Nejima, Ryohei [6 ,14 ]
Inomata, Takenori [7 ,14 ]
Kato, Naoko [8 ,14 ]
Chikama, Tai-ichiro [9 ,14 ]
Ominato, Jun [10 ,14 ]
Yunoki, Tatsuya [11 ,14 ]
Tsubota, Kinya [12 ,14 ]
Oda, Masahiro [13 ,14 ]
Suzutani, Manabu [1 ]
Sekiryu, Tetsuju [1 ]
Oshika, Tetsuro [2 ,14 ]
机构
[1] Fukushima Med Univ, Sch Med, Dept Ophthalmol, Fukushima, Japan
[2] Univ Tsukuba, Fac Med, Dept Ophthalmol, 1-1-1 Tennoudai, Tsukuba, Ibaraki 3058576, Japan
[3] Ichikawa Gen Hosp, Tokyo Dent Coll, Dept Ophthalmol, Chiba, Japan
[4] Osaka Univ, Grad Sch Med, Dept Ophthalmol, Osaka, Japan
[5] Tottori Univ, Fac Med, Div Ophthalmol & Visual Sci, Tottori, Japan
[6] Miyata Eye Hosp, Dept Ophthalmol, Miyazaki, Japan
[7] Juntendo Univ, Grad Sch Med, Dept Ophthalmol, Tokyo, Japan
[8] Tsukazaki Hosp, Dept Ophthalmol, Himeji, Hyogo, Japan
[9] Hiroshima Univ, Grad Sch Biomed & Hlth Sci, Div Ophthalmol & Visual Sci, Hiroshima, Japan
[10] Niigata Univ, Grad Sch Med & Dent Sci, Div Ophthalmol & Visual Sci, Niigata, Japan
[11] Univ Toyama, Dept Ophthalmol, Toyama, Japan
[12] Tokyo Med Univ, Dept Ophthalmol, Tokyo, Japan
[13] Nagoya Univ, Grad Sch Informat, Nagoya, Japan
[14] Japan Anterior Segment Artificial Intelligence Res, Tsukuba, Japan
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Artificial intelligence; Ocular surface; AI support; Smartphone image; Slit-lamp image; DEEP LEARNING ALGORITHM; DIABETIC-RETINOPATHY; VALIDATION; CARE;
D O I
10.1038/s41598-025-89768-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
CorneAI, a deep learning model designed for diagnosing cataracts and corneal diseases, was assessed for its impact on ophthalmologists' diagnostic accuracy. In the study, 40 ophthalmologists (20 specialists and 20 residents) classified 100 images, including iPhone 13 Pro photos (50 images) and diffuser slit-lamp photos (50 images), into nine categories (normal condition, infectious keratitis, immunological keratitis, corneal scar, corneal deposit, bullous keratopathy, ocular surface tumor, cataract/intraocular lens opacity, and primary angle-closure glaucoma). The iPhone and slit-lamp images represented the same cases. After initially answering without CorneAI, the same ophthalmologists responded to the same cases with CorneAI 2-4 weeks later. With CorneAI's support, the overall accuracy of ophthalmologists increased significantly from 79.2 to 88.8% (P < 0.001). Specialists' accuracy rose from 82.8 to 90.0%, and residents' from 75.6 to 86.2% (P < 0.001). Smartphone image accuracy improved from 78.7 to 85.5% and slit-lamp image accuracy from 81.2 to 90.6% (both, P < 0.001). In this study, CorneAI's own accuracy was 86%, but its support enhanced ophthalmologists' accuracy beyond the CorneAI's baseline. This study demonstrated that CorneAI, despite being trained on diffuser slit-lamp images, effectively improved diagnostic accuracy, even with smartphone images.
引用
收藏
页数:10
相关论文
共 33 条
  • [1] A study establishing sensitivity and accuracy of smartphone photography in ophthalmologic community outreach programs: Review of a smart eye camera
    Andhare, Pooja
    Ramasamy, Kim
    Ramesh, Rahul
    Shimizu, Eisuke
    Nakayama, Shintaro
    Gandhi, Preethika
    [J]. INDIAN JOURNAL OF OPHTHALMOLOGY, 2023, 71 (06) : 2416 - 2420
  • [2] Automatic Deep Learning-assisted Detection and Grading of Abnormalities in Knee MRI Studies
    Astuto, Bruno
    Flament, Io
    Namiri, Nikan K.
    Shah, Rutwik
    Bharadwaj, Upasana
    Link, Thomas M.
    Bucknor, Matthew D.
    Pedoia, Valentina
    Majumdar, Sharmila
    [J]. RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (03)
  • [3] Update on the Management of Infectious Keratitis
    Austin, Ariana
    Lietman, Tom
    Rose-Nussbaumer, Jennifer
    [J]. OPHTHALMOLOGY, 2017, 124 (11) : 1678 - 1689
  • [4] Artificial intelligence in medical science: a review
    Bindra, Simrata
    Jain, Richa
    [J]. IRISH JOURNAL OF MEDICAL SCIENCE, 2024, 193 (03) : 1419 - 1429
  • [5] Ebbinghaus H., 1885, About memory: Studies in experimental psychology
  • [6] A snapshot of artificial intelligence research 2019-2021: is it replacing or assisting physicians?
    Elmahdy, Mahmoud
    Sebro, Ronnie
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2023, 30 (09) : 1552 - 1557
  • [7] Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis
    Flaxman, Seth R.
    Bourne, Rupert R. A.
    Resnikoff, Serge
    Ackland, Peter
    Braithwaite, Tasanee
    Cicinelli, Maria V.
    Das, Aditi
    Jonas, Jost B.
    Keeffe, Jill
    Kempen, John H.
    Leasher, Janet
    Limburg, Hans
    Naidoo, Kovin
    Pesudovs, Konrad
    Silvester, Alex
    Stevens, Gretchen A.
    Tahhan, Nina
    Wong, Tien Y.
    Taylor, Hugh R.
    [J]. LANCET GLOBAL HEALTH, 2017, 5 (12): : E1221 - E1234
  • [8] Is Artificial Intelligence the New Friend for Radiologists? A Review Article
    Gampala, Sravani
    Vankeshwaram, Varun
    Gadula, Satya Siva P.
    [J]. CUREUS JOURNAL OF MEDICAL SCIENCE, 2020, 12 (10)
  • [9] Assessing the subjective quality of smartphone anterior segment photography: a non-inferiority study
    Goel, Raghav
    Macri, Carmelo
    Bahrami, Bobak
    Casson, Robert
    Chan, Weng Onn
    [J]. INTERNATIONAL OPHTHALMOLOGY, 2023, 43 (02) : 403 - 410
  • [10] Deep learning for identifying corneal diseases from ocular surface slit-lamp photographs
    Gu, Hao
    Guo, Youwen
    Gu, Lei
    Wei, Anji
    Xie, Shirong
    Ye, Zhengqiang
    Xu, Jianjiang
    Zhou, Xingtao
    Lu, Yi
    Liu, Xiaoqing
    Hong, Jiaxu
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)