共 50 条
Sufficient conditions for k-factor-critical graphs and spanning k-trees of graphs
被引:0
|作者:
Ao, Guoyan
[1
,2
]
Liu, Ruifang
[1
]
Yuan, Jinjiang
[1
]
机构:
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
[2] Hulunbuir Univ, Sch Math & Phys, Hailar 021008, Inner Mongolia, Peoples R China
基金:
中国国家自然科学基金;
关键词:
k-factor-critical;
spanning k-tree;
r-clique;
m-connected graphs;
spectral radius;
NUMBER;
TOUGHNESS;
CLIQUES;
THEOREM;
D O I:
10.1007/s10801-025-01396-5
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
For any integer k >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, a graph G is said to be k-factor-critical if G-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-S$$\end{document} has a perfect matching for each S subset of V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq V(G)$$\end{document} with |S|=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|S|=k$$\end{document}. In this paper, we present a sufficient condition in terms of the number of r-cliques to guarantee a graph with minimum degree at least delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} to be k-factor-critical, which improves the result of Fan and Lin (Spectral conditions for k-extendability and k-factors of bipartite graphs, arXiv: 2211.09304). For any integer k >= 2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2,$$\end{document} a spanning k-tree of a connected graph G is a spanning tree in which every vertex has degree at most k. Neumann-Lara and Rivera-Campo (Combinatorica 11:55-61, 1991) proved that, for an m-connected graph G with m >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 2$$\end{document}, if its independence number alpha(G)<=(k-1)m+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (G)\le (k-1)m+1$$\end{document}, then G contains a spanning k-tree. Motivated by the above result, we provide tight spectral conditions for an m-connected graph to contain a spanning k-tree.
引用
收藏
页数:12
相关论文