Existence of at least k solutions to a fractional p-Kirchhoff problem involving singularity and critical exponent

被引:1
作者
Ghosh, Sekhar [1 ]
Choudhuri, Debajyoti [2 ]
Fiscella, Alessio [3 ]
机构
[1] Natl Inst Technol Calicut, Dept Math, Kozhikode 673601, Kerala, India
[2] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Khordha 752050, Odisha, India
[3] Univ Estadual Campinas, Dept Matemat, Imecc, Rua Sergio Buarque Holanda 651, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Fractional p-Laplacian; Critical Exponent; Concentration-Compactness Principle; Genus; Symmetric Mountain Pass Theorem; Singularity; POSITIVE SOLUTIONS; MULTIPLE SOLUTIONS; ELLIPTIC EQUATION; SOBOLEV;
D O I
10.1007/s13540-025-00382-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of nonnegative solutions to the following nonlocal elliptic problem involving singularity M(integral(Q)|u(x)-u(y)|(p) / |x-y|(N+ps) dxdy)(-Delta)(p)(s)u=lambda/u(gamma)+u(ps & lowast;)-1 in Omega, u>0 in Omega, u=0 in R-N\Omega, where M is the Kirchhoff function, Q=R-2N\((R-N\Omega)x(R-N\Omega)), Omega subset of R-N, is a bounded domain with Lipschitz boundary, lambda>0, N>ps, 0<s,gamma<1, (-Delta)(p)(s) is the fractional p-Laplacian for 1<p<infinity and p(s)(& lowast;)=Np/N-ps is the critical Sobolev exponent. We employ a cut-off argument to obtain the existence of k (being arbitrarily large integer) solutions. Furthermore, by using the Moser iteration technique, we prove an uniform L-infinity(Omega) bound for the solutions. The novelty of this work lies in proving the existence of small energy solutions by using symmetric mountain pass theorem in spite of the presence of a critical nonlinear term which, of course, is super-linear.
引用
收藏
页码:1012 / 1039
页数:28
相关论文
共 49 条
[1]   Positive solutions for a quasilinear elliptic equation of Kirchhoff type [J].
Alves, CO ;
Corrêa, FJSA ;
Ma, TF .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) :85-93
[2]   MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT OR WITH A NONSYMMETRIC TERM [J].
AZORERO, JG ;
ALONSO, IP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :877-895
[3]   On Existence Results for an Anisotropic Elliptic Equation of Kirchhoff-Type by a Monotonicity Method [J].
Bensedik, Ahmed .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2014, 57 (03) :489-502
[4]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[5]  
Bisci GM, 2014, MATH RES LETT, V21, P241
[6]   Semilinear elliptic equations with singular nonlinearities [J].
Boccardo, Lucio ;
Orsina, Luigi .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 37 (3-4) :363-380
[7]   The second eigenvalue of the fractional p-Laplacian [J].
Brasco, Lorenzo ;
Parini, Enea .
ADVANCES IN CALCULUS OF VARIATIONS, 2016, 9 (04) :323-355
[8]   Nonlocal Minimal Surfaces [J].
Caffarelli, L. ;
Roquejoffre, J. -M. ;
Savin, O. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2010, 63 (09) :1111-1144
[9]  
Caffarelli L., 2012, Nonlinear partial differential equations, P37
[10]   Nonlocal problems with singular nonlinearity [J].
Canino, Annamaria ;
Montoro, Luigi ;
Sciunzi, Berardino ;
Squassina, Marco .
BULLETIN DES SCIENCES MATHEMATIQUES, 2017, 141 (03) :223-250