Transcriptomic analysis of salt-stress-responsive genes in lentil roots and leaves

被引:0
|
作者
Goudarzi, Mehdi [1 ]
Ismaili, Ahmad [1 ]
Sohrabi, Seyed Sajad [1 ]
Nazarian-Firouzabadi, Farhad [1 ]
Eisvand, Hamid Reza [1 ]
机构
[1] Lorestan Univ, Fac Agr, Dept Plant Prod & Genet Engn, POB 68149-84896, Khorramabad, Iran
关键词
Lentil; Salt stress; Leaves; Roots; Salt stress-responsive genes; SIGNAL-TRANSDUCTION; ABSCISIC-ACID; EXPRESSION ANALYSIS; SALINITY; TOLERANCE; DROUGHT; PROTEINS; METABOLISM; RESISTANCE; PROTEOMICS;
D O I
10.1007/s11816-024-00937-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Salt stress is a critical environmental element contributing to the growth and productivity of different crops like lentils. In this study, to better understand the mechanism of lentil response to salt stress, gene expression alterations in lentil roots and leaves were investigated using the RNA-seq technique. By performing gene expression analysis, it was shown that salt stress had greater impacts on the gene expression regulation in the root (5420 DEGs) than leaf tissue (1050 DEGs), which consequently complicates the salt stress response mechanisms highlighted in the root tissue. In addition, gene ontology (GO) and metabolic pathways analyses also showed that the root and leaf tissues had very different enriched GO terms and metabolic pathways; however, some GO terms, such as carbohydrate metabolic process, response to stress and hydrolase activity and acting on glycosyl bonds, were similar in both tissues. Additionally, as revealed by the functional analysis in both tissues, the salt stress response could be primarily obtained through sensing and signaling pathways, transcriptional reprogramming, ionic homeostasis stabilizing, increased ROS inhibition, and the transporter system and photosynthesis activation. Some candidate genes involved in hormone (such as PP2C, CKX5, ETR2, GASA1, and LOX1) and kinase signaling pathways (such as MKD1, CRK3, LECRK-IX.1, and LRK10L1.2) as well as several transcriptions (such as bHLH, AP2/ERF, MYB, and WRKY) and transporter factors (such as ABC, AAP3, PIP1B, PNC1, and NHX3) were identified to contribute to salt stress response. Considering insufficient genetic information and accurate knowledge of lentil response to salt stress, it can be said that our transcript profiling and integrated bioinformatics analyses provide some necessary information for further functional studies of candidate genes and their regulatory factors affecting response to salt stress in lentil plants.
引用
收藏
页码:907 / 925
页数:19
相关论文
共 50 条
  • [1] Transcriptomic Analysis of Salt-Stress-Responsive Genes in Barley Roots and Leaves
    Ouertani, Rim Nefissi
    Arasappan, Dhivya
    Abid, Ghassen
    Ben Chikha, Mariem
    Jardak, Rahma
    Mahmoudi, Henda
    Mejri, Samiha
    Ghorbel, Abdelwahed
    Ruhlman, Tracey A.
    Jansen, Robert K.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (15)
  • [2] Comparative Transcriptome Analysis of Salt-Stress-Responsive Genes in Rice Roots
    Song, Rui
    Huang, Yan
    Ji, Xin
    Wei, Yunfei
    Liu, Qiuyuan
    Li, Shumei
    Liu, Juan
    Dong, Pengfei
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2023, 92 (01) : 237 - 250
  • [3] Transcriptomic analysis of salt stress responsive genes in Rhazya stricta
    Hajrah, Nahid H.
    Obaid, Abdullah Y.
    Atef, Ahmed
    Ramadan, Ahmed M.
    Arasappan, Dhivya
    Nelson, Charllotte A.
    Edris, Sherif
    Mutwakil, Mohammed Z.
    Alhebshi, Alawia
    Gadalla, Nour O.
    Makki, Rania M.
    Al-Kordy, Madgy A.
    El-Domyati, Fotouh M.
    Sabir, Jamal S. M.
    Khiyami, Mohammad A.
    Hall, Neil
    Bahieldin, Ahmed
    Jansen, Robert K.
    PLOS ONE, 2017, 12 (05):
  • [4] Identification of Early Salt-Stress-Responsive Proteins in In Vitro Prunus Cultured Excised Roots
    Sevilla, Emma
    Andreu, Pilar
    Fillat, Maria F.
    Luisa Peleato, M.
    Marin, Juan A.
    Arbeloa, Arancha
    PLANTS-BASEL, 2022, 11 (16):
  • [5] Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice
    Liu, Chih-Wei
    Chang, Tao-Shan
    Hsu, Yu-Kai
    Wang, Arthur Z.
    Yen, Hung-Chen
    Wu, Yung-Pei
    Wang, Chang-Sheng
    Lai, Chien-Chen
    PROTEOMICS, 2014, 14 (15) : 1759 - 1775
  • [6] Uncovering candidate genes responsive to salt stress in Salix matsudana (Koidz) by transcriptomic analysis
    Chen, Yanhong
    Jiang, Yuna
    Chen, Yu
    Feng, Wenxiang
    Liu, Guoyuan
    Yu, Chunmei
    Lian, Bolin
    Zhong, Fei
    Zhang, Jian
    PLOS ONE, 2020, 15 (08):
  • [7] Transcriptomic profiling of sorghum leaves and roots responsive to drought stress at the seedling stage
    ZHANG Deng-feng
    ZENG Ting-ru
    LIU Xu-yang
    GAO Chen-xi
    LI Yong-xiang
    LI Chun-hui
    SONG Yan-chun
    SHI Yun-su
    WANG Tian-yu
    LI Yu
    Journal of Integrative Agriculture, 2019, 18 (09) : 1980 - 1995
  • [8] Transcriptomic profiling of sorghum leaves and roots responsive to drought stress at the seedling stage
    Zhang Deng-feng
    Zeng Ting-ru
    Liu Xu-yang
    Gao Chen-xi
    Li Yong-xiang
    Li Chun-hui
    Song Yan-chun
    Shi Yun-su
    Wang Tian-yu
    Li Yu
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2019, 18 (09) : 1980 - 1995
  • [9] Identification of genes responsive to salt stress on Tamarix hispida roots
    Li, Huiyu
    Wang, Yucheng
    Jiang, Jing
    Liu, Guifeng
    Gao, Caiqiu
    Yang, Chuanping
    GENE, 2009, 433 (1-2) : 65 - 71
  • [10] Differential Transcriptomic Analysis by RNA-Seq of GSNO-Responsive Genes Between Arabidopsis Roots and Leaves
    Begara-Morales, Juan C.
    Sanchez-Calvo, Beatriz
    Luque, Francisco
    Leyva-Perez, Maria O.
    Leterrier, Marina
    Corpas, Francisco J.
    Barroso, Juan B.
    PLANT AND CELL PHYSIOLOGY, 2014, 55 (06) : 1080 - 1095