Development of a quantitative prediction algorithm for human cord blood-derived CD34+ hematopoietic stem-progenitor cells using parametric and non-parametric machine learning models

被引:0
作者
Leung, Chi-Kwan [1 ]
Zhu, Pengcheng [1 ]
Loke, Ian [1 ]
Tang, Kin Fai [1 ]
Leung, Ho-Chuen [1 ]
Yeung, Chin-Fung [1 ]
机构
[1] Cordlife Grp Ltd, Grp Lab Operat, A Posh Bizhub 06-01-09,1 Yishun Ind St 1, Singapore 768160, Singapore
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Hematopoietic stem cells; AABB; FACT; CAP; Cord blood bank; Unrelated hematopoietic stem cell transplant; ARTIFICIAL NEURAL-NETWORKS; INVENTORY SIZE; TRANSPLANTATION; IMPACT; COUNT; EXPANSION; SELECTION; QUALITY; VOLUME; YIELD;
D O I
10.1038/s41598-024-75731-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The transplantation of CD34+ hematopoietic stem-progenitor cells (HSPCs) derived from cord blood serves as the standard treatment for selected hematological, oncological, metabolic, and immunodeficiency disorders, of which the dose is pivotal to the clinical outcome. Based on numerous maternal and neonatal parameters, we evaluated the predictive power of mathematical pipelines to the proportion of CD34+ cells in the final cryopreserved cord blood product adopting both parametric and non-parametric algorithms. Twenty-four predictor variables associated with the cord blood processing of 802 processed cord blood units randomly sampled in 2020-2022 were retrieved and analyzed. Prediction models were developed by adopting the parametric (multivariate linear regression) and non-parametric (random forest and back propagation neural network) statistical models to investigate the data patterns for determining the single outcome (i.e., the proportion of CD34+ cells). The multivariate linear regression model produced the lowest root-mean-square deviation (0.0982). However, the model created by the back propagation neural network produced the highest median absolute deviation (0.0689) and predictive power (56.99%) in comparison to the random forest and multivariate linear regression. The predictive model depending on a combination of continuous and discrete maternal with neonatal parameters associated with cord blood processing can predict the CD34+ dose in the final product for clinical utilization. The back propagation neural network algorithm produces a model with the highest predictive power which can be widely applied to assisting cell banks for optimal cord blood unit selection to ensure the highest chance of transplantation success.
引用
收藏
页数:14
相关论文
共 53 条
  • [1] Impact of maternal and neonatal factors on parameters of hematopoietic potential in umbilical cord blood
    Al-Deghaither, Sara Y.
    [J]. SAUDI MEDICAL JOURNAL, 2015, 36 (06) : 703 - 711
  • [2] Association, 2022, Cord blood: the basics
  • [3] Collection and preservation of cord blood for personal use
    Ballen, Karen K.
    Barker, Juliet N.
    Stewart, Susan K.
    Greene, Michael F.
    Lane, Thomas A.
    [J]. BIOLOGY OF BLOOD AND MARROW TRANSPLANTATION, 2008, 14 (03) : 356 - 363
  • [4] Umbilical cord blood transplantation: the first 25 years and beyond
    Ballen, Karen K.
    Gluckman, Eliane
    Broxmeyer, Hal E.
    [J]. BLOOD, 2013, 122 (04) : 491 - 498
  • [5] Barini R, 2011, EINSTEIN-SAO PAULO, V9, P207, DOI [10.1590/S1679-45082011GS1809, 10.1590/s1679-45082011gs1809]
  • [6] CD34+ cell content of 126 341 cord blood units in the US inventory: implications for transplantation and banking
    Barker, Juliet N.
    Kempenich, Jane
    Kurtzberg, Joanne
    Brunstein, Claudio G.
    Delaney, Colleen
    Milano, Filippo
    Politikos, Ioannis
    Shpall, Elizabeth J.
    Scaradavou, Andromachi
    Dehn, Jason
    [J]. BLOOD ADVANCES, 2019, 3 (08) : 1267 - 1271
  • [7] Availability of Cord Blood Extends Allogeneic Hematopoietic Stem Cell Transplant Access to Racial and Ethnic Minorities
    Barker, Juliet N.
    Byam, Courtney E.
    Kernan, Nancy A.
    Lee, Sinda S.
    Hawke, Rebecca M.
    Doshi, Kathleen A.
    Wells, Deborah S.
    Heller, Glenn
    Papadopoulos, Esperanza B.
    Scaradavou, Andromachi
    Young, James W.
    van den Brink, Marcel R. M.
    [J]. BIOLOGY OF BLOOD AND MARROW TRANSPLANTATION, 2010, 16 (11) : 1541 - 1548
  • [8] Evaluating communication training for paid carers of people with traumatic brain injury
    Behn, Nicholas
    Togher, Leanne
    Power, Emma
    Heard, Rob
    [J]. BRAIN INJURY, 2012, 26 (13-14) : 1702 - 1715
  • [9] Maternal predictors and quality of umbilical cord blood units
    Bielec-Berek, Beata
    Jastrzebska-Stojko, Zaneta
    Drosdzol-Cop, Agnieszka
    Jendyk, Cecylia
    Boruczkowski, Dariusz
    Oldak, Tomasz
    Nowak-Brzezinska, Agnieszka
    Stojko, Rafal
    [J]. CELL AND TISSUE BANKING, 2018, 19 (01) : 69 - 75
  • [10] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32