Investigation of the Dimension of the Spectral Projection of a Self-Adjoint Second-Order Quasidifferential Operator

被引:0
作者
Vatolkin, M. Yu. [1 ]
机构
[1] Kalashnikov Izhevsk State Tech Univ, Izhevsk 426069, Russia
关键词
quasidifferential operator; spectral projection; self-adjoint quasidifferential expression; STURM-LIOUVILLE OPERATORS; BOUNDARY-VALUE PROBLEMS; OSCILLATION-THEORY; REDUCING NUMBER; EIGENVALUES; EIGENFUNCTIONS; ASYMPTOTICS; ORDER;
D O I
10.3103/S1066369X24700506
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let lambda(1) and lambda(2) be real, lambda(1 )<lambda(2) functions be solutions to the second order quasidif lambda 1 lambda 2 lambda 1 < lambda 2 , psi - ( lambda i , t ) ferential equations , satisfying a homogeneous boundary condition at point L = i Pi = 1,2, psi - lambda psi - 0 a . We express the number of eigenvalues of operator L belonging to the interval( lambda( 1) , lambda (2) ) (or the dimension of its spectral projection relative to the interval ) in terms of the number of zeros of the Vron( lambda( 1) , lambda (2 )) skian composed for the functions and psi- (lambda(1) , t ) psi - ( lambda (2) , t ).
引用
收藏
页码:34 / 48
页数:15
相关论文
共 50 条
[1]   Characterization of self-adjoint domains for regular even order C-symmetric differential operators [J].
Bao, Qinglan ;
Sun, Jiong ;
Hao, Xiaoling ;
Zettl, Anton .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2019, (62) :1-17
[2]  
Borovskikh A. V., 1990, Candidate's Dissertation in Physics and Mathematics
[3]   CHEBYSHEV-HAAR SYSTEMS IN THE THEORY OF DISCONTINUOUS KELLOGG KERNELS [J].
BOROVSKIKH, AV ;
POKORNYI, YV .
RUSSIAN MATHEMATICAL SURVEYS, 1994, 49 (03) :1-42
[4]  
Derr V. Ya., 1999, Izv. Inst. Mat. Inf. Udmurt. Gos. Univ., P3
[5]  
Derr V. Ya., 2017, On the spectrum of some multipoint problems
[6]  
[Дерр Василий Яковлевич Derr Vasilii Yakovlevich], 2011, [Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Komp'yuternye nauki], P43
[7]  
DERR VY, 1987, DIFF EQUAT+, V23, P1254
[8]   WEYL-TITCHMARSH THEORY FOR STURM-LIOUVILLE OPERATORS WITH DISTRIBUTIONAL POTENTIALS [J].
Eckhardt, Jonathan ;
Gesztesy, Fritz ;
Nichols, Roger ;
Teschl, Gerald .
OPUSCULA MATHEMATICA, 2013, 33 (03) :467-563
[9]  
Everitt W. N., 1999, Mathematical Surveys and Monographs, V61, DOI [10.1090/surv/061, DOI 10.1090/SURV/061]
[10]  
EVERITT WN, 1992, P LOND MATH SOC, V65, P383