Analytical solutions of the Caudrey-Dodd-Gibbon equation using Khater II and variational iteration methods

被引:2
作者
Khater, Mostafa M. A. [1 ,2 ,3 ]
Alfalqi, Suleman H. [4 ]
机构
[1] Xuzhou Med Univ, Sch Med Informat & Engn, 209 Tongshan Rd, Xuzhou 221004, Jiangsu, Peoples R China
[2] Higher Inst Engn & Technol, Dept Basic Sci, Obour 10587, Cairo, Egypt
[3] Ugra State Univ, Inst Digital Econ, Khanty Mansiysk 628012, Russia
[4] Univ King Khalid, Dept Math, Appl Collage Mahayil, Abha, Saudi Arabia
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Nonlinear waves; Caudrey-Dodd-Gibbon equation; Khater II method; Variational iteration method; Soliton wave; Semi-analytical solutions; Stability; SOLITON MOLECULES; WAVE;
D O I
10.1038/s41598-024-75969-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study focuses on solving the Caudrey-Dodd-Gibbon (CDG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {CDG}$$\end{document}) equation using the Khater II (KII\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {KII}$$\end{document}) method and the Variational Iteration (VI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}{\mathbb {I}}$$\end{document}) method. The CDG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {CDG}$$\end{document} equation is a pivotal mathematical model in nonlinear wave dynamics, essential for understanding the evolution, interaction, and preservation of wave forms in dispersive media. Its applications span various fields, including fluid dynamics, nonlinear optics, and plasma physics, where it plays a crucial role in analyzing solitons and complex wave interactions. In this research, we meticulously implement the KII\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {KII}$$\end{document} and VI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}{\mathbb {I}}$$\end{document} methods to derive solutions for this nonlinear partial differential equation. Our findings reveal new aspects of the equation's behavior, offering deeper insights into nonlinear wave phenomena. The significance of this study lies in its contribution to advancing the understanding of these phenomena and their practical applications in the academic realm. The results underscore the effectiveness of the employed methods, their innovative contributions, and their relevance to applied mathematics.
引用
收藏
页数:11
相关论文
共 40 条
  • [1] Symbolic computation and physical validation of optical solitons in nonlinear models
    Ahmad, Jamshad
    Hameed, Maham
    Mustafa, Zulaikha
    Ali, Asghar
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (06)
  • [2] A study on Caudrey-Dodd-Gibbon-Sawada-Kotera partial differential equation
    Baskonus, Haci Mehmet
    Mahmud, Adnan Ahmad
    Muhamad, Kalsum Abdulrahman
    Tanriverdi, Tanfer
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (14) : 8737 - 8753
  • [3] Some new solutions of the Caudrey-Dodd-Gibbon (CDG) equation using the conformable derivative
    Bibi, Sadaf
    Ahmed, Naveed
    Faisal, Imran
    Mohyud-Din, Syed Tauseef
    Rafiq, Muhammad
    Khan, Umar
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [4] ON THE COMPLEX MIXED DARK-BRIGHT WAVE DISTRIBUTIONS TO SOME CONFORMABLE NONLINEAR INTEGRABLE MODELS
    Ciancio, Armando
    Yel, Gulnur
    Kumar, Ajay
    Baskonus, Haci Mehmet
    Ilhan, Esin
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (01)
  • [5] New Wave Solutions for the Two-Mode Caudrey-Dodd-Gibbon Equation
    Cimpoiasu, Rodica
    Constantinescu, Radu
    [J]. AXIOMS, 2023, 12 (07)
  • [6] Exact Solutions to Some Nonlinear Time-Fractional Evolution Equations Using the Generalized Kudryashov Method in Mathematical Physics
    Ekici, Mustafa
    [J]. SYMMETRY-BASEL, 2023, 15 (10):
  • [7] An Efficient Analytical Approach to Investigate Fractional Caudrey-Dodd-Gibbon Equations with Non-Singular Kernel Derivatives
    Fathima, Dowlath
    Alahmadi, Reham A.
    Khan, Adnan
    Akhter, Afroza
    Ganie, Abdul Hamid
    [J]. SYMMETRY-BASEL, 2023, 15 (04):
  • [8] Employing Hirota's bilinear form to find novel lump waves solutions to an important nonlinear model in fluid mechanics
    Ghanbari, Behzad
    [J]. RESULTS IN PHYSICS, 2021, 29
  • [9] Variable-coefficient polynomial function method for finding the lump-type solutions of integrable system with variable coefficients
    Guan, Hong-Yang
    Liu, Jian-Guo
    [J]. MODERN PHYSICS LETTERS B, 2024, 38 (14):
  • [10] Solving nonlinear soliton equations using improved physics-informed neural networks with adaptive mechanisms
    Guo, Yanan
    Cao, Xiaoqun
    Peng, Kecheng
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2023, 75 (09)