Multi-branch convolutional neural network with cross-attention mechanism for emotion recognition

被引:0
|
作者
Yan, Fei [1 ]
Guo, Zekai [1 ]
Iliyasu, Abdullah M. [2 ,3 ]
Hirota, Kaoru [3 ,4 ]
机构
[1] Changchun Univ Sci & Technol, Sch Comp Sci & Technol, Changchun 130022, Peoples R China
[2] Prince Sattam Bin Abdulaziz Univ, Coll Engn, Al Kharj 11942, Saudi Arabia
[3] Tokyo Inst Technol, Sch Comp, Yokohama 2268502, Japan
[4] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Biomedical engineering; EEG signal; Emotion recognition; Feature fusion; Convolutional neural network;
D O I
10.1038/s41598-025-88248-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Research on emotion recognition is an interesting area because of its wide-ranging applications in education, marketing, and medical fields. This study proposes a multi-branch convolutional neural network model based on cross-attention mechanism (MCNN-CA) for accurate recognition of different emotions. The proposed model provides automated extraction of relevant features from multimodal data and fusion of feature maps from diverse sources as modules for the subsequent emotion recognition. In the feature extraction stage, various convolutional neural networks were designed to extract critical information from multiple dimensional features. The feature fusion module was used to enhance the inter-correlation between features based on channel-efficient attention mechanism. This innovation proves effective in fusing distinctive features within a single mode and across different modes. The model was assessed based on EEG emotion recognition experiments on the SEED and SEED-IV datasets. Furthermore, the efficiency of the proposed model was evaluated via multimodal emotion experiments using EEG and text data from the ZuCo dataset. Comparative analysis alongside contemporary studies shows that our model excels in terms of accuracy, precision, recall, and F1-score.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Metallic product recognition with dual attention and multi-branch residual blocks-based convolutional neural networks
    Han H.
    Zhang Q.
    Li F.
    Du Y.
    Gu Y.
    Wu Y.
    Circular Economy, 2022, 1 (02):
  • [22] Electrical resistance tomography image reconstruction based on one-dimensional multi-branch convolutional neural network combined with attention mechanism
    Tang, Hao
    Xu, Chao
    Han, Xu
    FLOW MEASUREMENT AND INSTRUMENTATION, 2022, 84
  • [23] Multimodal Fusion Convolutional Neural Network With Cross-Attention Mechanism for Internal Defect Detection of Magnetic Tile
    Lu, Houhong
    Zhu, Yangyang
    Yin, Ming
    Yin, Guofu
    Xie, Luofeng
    IEEE ACCESS, 2022, 10 : 60876 - 60886
  • [24] A joint hierarchical cross-attention graph convolutional network for multi-modal facial expression recognition
    Xu, Chujie
    Du, Yong
    Wang, Jingzi
    Zheng, Wenjie
    Li, Tiejun
    Yuan, Zhansheng
    COMPUTATIONAL INTELLIGENCE, 2024, 40 (01)
  • [25] Multi-branch Recurrent Attention Convolutional Neural Network with Evidence Theory for Fine-Grained Image Classification
    Xu, Zhikang
    Zhang, Bofeng
    Fu, Haijie
    Yue, Xiaodong
    Lv, Ying
    BELIEF FUNCTIONS: THEORY AND APPLICATIONS (BELIEF 2021), 2021, 12915 : 177 - 184
  • [26] Multi-Scale and Multi-Branch Convolutional Neural Network for Retinal Image Segmentation
    Jiang, Yun
    Liu, Wenhuan
    Wu, Chao
    Yao, Huixiao
    SYMMETRY-BASEL, 2021, 13 (03): : 1 - 25
  • [27] A multi-branch separable convolution neural network for pedestrian attribute recognition
    Junejo, Imran N.
    Ahmed, Naveed
    HELIYON, 2020, 6 (03)
  • [28] Deep Convolutional Neural Network for Segmentation and Classification of Structural Multi-branch Cracks
    Kandula, Himavanth
    Koduri, Hrushith Ram
    Kalapatapu, Prafulla
    Pasupuleti, Venkata Dilip Kumar
    EUROPEAN WORKSHOP ON STRUCTURAL HEALTH MONITORING (EWSHM 2022), VOL 2, 2023, : 177 - 185
  • [29] Prediction of Hourly Airport Operational Throughput with a Multi-Branch Convolutional Neural Network
    Feng, Huang
    Zhang, Yu
    AEROSPACE, 2024, 11 (01)
  • [30] Coal-gangue recognition via multi-branch convolutional neural network based on MFCC in noisy environment
    Jiang, HaiYan
    Zong, DaShuai
    Song, QingJun
    Gao, KuiDong
    Shao, HuiZhi
    Liu, ZhiJiang
    Tian, Jing
    SCIENTIFIC REPORTS, 2023, 13 (01)