Multi-branch convolutional neural network with cross-attention mechanism for emotion recognition

被引:0
|
作者
Yan, Fei [1 ]
Guo, Zekai [1 ]
Iliyasu, Abdullah M. [2 ,3 ]
Hirota, Kaoru [3 ,4 ]
机构
[1] Changchun Univ Sci & Technol, Sch Comp Sci & Technol, Changchun 130022, Peoples R China
[2] Prince Sattam Bin Abdulaziz Univ, Coll Engn, Al Kharj 11942, Saudi Arabia
[3] Tokyo Inst Technol, Sch Comp, Yokohama 2268502, Japan
[4] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Biomedical engineering; EEG signal; Emotion recognition; Feature fusion; Convolutional neural network;
D O I
10.1038/s41598-025-88248-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Research on emotion recognition is an interesting area because of its wide-ranging applications in education, marketing, and medical fields. This study proposes a multi-branch convolutional neural network model based on cross-attention mechanism (MCNN-CA) for accurate recognition of different emotions. The proposed model provides automated extraction of relevant features from multimodal data and fusion of feature maps from diverse sources as modules for the subsequent emotion recognition. In the feature extraction stage, various convolutional neural networks were designed to extract critical information from multiple dimensional features. The feature fusion module was used to enhance the inter-correlation between features based on channel-efficient attention mechanism. This innovation proves effective in fusing distinctive features within a single mode and across different modes. The model was assessed based on EEG emotion recognition experiments on the SEED and SEED-IV datasets. Furthermore, the efficiency of the proposed model was evaluated via multimodal emotion experiments using EEG and text data from the ZuCo dataset. Comparative analysis alongside contemporary studies shows that our model excels in terms of accuracy, precision, recall, and F1-score.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Shallow multi-branch attention convolutional neural network for micro-expression recognition
    Gang Wang
    Shucheng Huang
    Zhe Tao
    Multimedia Systems, 2023, 29 : 1967 - 1980
  • [2] Shallow multi-branch attention convolutional neural network for micro-expression recognition
    Wang, Gang
    Huang, Shucheng
    Tao, Zhe
    MULTIMEDIA SYSTEMS, 2023, 29 (04) : 1967 - 1980
  • [3] Cross-Attention Guided Local Feature Enhanced Multi-Branch Network for Person Re-Identification
    Wang, Xiaoyong
    Yang, Jianxi
    ELECTRONICS, 2025, 14 (08):
  • [4] Multi-branch Aggregate Convolutional Neural Network for Image Classification
    Fan, Rui
    Jiang, Pinqun
    Zeng, Shangyou
    Li, Peng
    SERVICE-ORIENTED COMPUTING, ICSOC 2018, 2019, 11434 : 102 - 112
  • [5] Multimodal Cross-Attention Bayesian Network for Social News Emotion Recognition
    Wang, Xinzhi
    Li, Mengyue
    Chang, Yudong
    Luo, Xiangfeng
    Yao, Yige
    Li, Zhichao
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [6] MMCNN: A Multi-branch Multi-scale Convolutional Neural Network for Motor Imagery Classification
    Jia, Ziyu
    Lin, Youfang
    Wang, Jing
    Yang, Kaixin
    Liu, Tianhang
    Zhang, Xinwang
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT III, 2021, 12459 : 736 - 751
  • [7] Multi-branch convolutional neural network for multiple sclerosis lesion segmentation
    Aslani, Shahab
    Dayan, Michael
    Storelli, Loredana
    Filippi, Massimo
    Murino, Vittorio
    Rocca, Maria A.
    Sona, Diego
    NEUROIMAGE, 2019, 196 : 1 - 15
  • [8] A multi-branch convolutional neural network with density map for aphid counting
    Li, Rui
    Wang, Rujing
    Xie, Chengjun
    Chen, Hongbo
    Long, Qi
    Liu, Liu
    Zhang, Jie
    Chen, Tianjiao
    Hu, Haiying
    Jiao, Lin
    Du, Jianming
    Liu, Haiyun
    BIOSYSTEMS ENGINEERING, 2022, 213 : 148 - 161
  • [9] A multi-branch convolutional neural network for snoring detection based on audio
    Dong, Hao
    Wu, Haitao
    Yang, Guan
    Zhang, Junming
    Wan, Keqin
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2024,
  • [10] IS CROSS-ATTENTION PREFERABLE TO SELF-ATTENTION FOR MULTI-MODAL EMOTION RECOGNITION?
    Rajan, Vandana
    Brutti, Alessio
    Cavallaro, Andrea
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4693 - 4697