Optimizing structural and cycling stability in sodium-ion batteries using tailored glass fiber separators

被引:2
作者
Das, Sayan [1 ,2 ]
Adyam, Venimadhav [1 ]
机构
[1] IIT Kharagpur, Cryogen Engn Ctr, Kharagpur 721302, West Bengal, India
[2] Purdue Univ, Davidson Sch Chem Engn, W Lafayette, IN 47906 USA
关键词
Solid-state separator; Sodium metal battery; Electrolyte; Glass fiber separator; NVP cathode; POLYMER ELECTROLYTE; COMPOSITE SEPARATOR; TEMPERATURE; PERFORMANCE; DESIGN;
D O I
10.1007/s10800-024-02203-y
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In sodium-ion battery technology, glass fiber separators, known for their porous structure, are widely used due to their reduced capacity degradation, contrasting with commercial polyolefins which often face liquid absorption issues. To augment structural stability, we have engineered a commercial glass fiber separator, integrating an optimal quantity of oxide nanoparticles, such as silica with poly (vinylidene fluoride-co-hexafluoropropylene) PVDF-HFP, wherein PVDF-HFP serves as a binding agent. In pursuit of making solid-state, we additionally layered the composite separator with 4 wt.% PVDF-HFP polymer coating and suffused it with a polydopamine solution to reduce the hydrophobicity of the PVDF-HFP polymer. The sodium vanadium phosphate (Na||NVP) cell, equipped with the as developed solid-state composite glass fiber separator with carbonate-based conventional electrolyte, has exhibited a commendable capacity of 73.4 mAh/g, maintaining 90.5% of this capacity after 200 cycles at a 1C rate. This impressive cycling performance is attributed to the forming of a stable cathode-electrolyte interphase (CEI) layer, as elucidated through X-ray photoelectron spectroscopy (XPS) analysis.
引用
收藏
页码:619 / 629
页数:11
相关论文
共 49 条
[1]   Robust cathode-ether electrolyte interphase on interfacial redox assembled fluorophosphate enabling high-rate and ultrastable sodium ion full cells [J].
Ba, Deliang ;
Gui, Qiuyue ;
Liu, Wenyi ;
Wang, Zhuo ;
Li, Yuanyuan ;
Liu, Jinping .
NANO ENERGY, 2022, 94
[2]  
Chen DJ, 2023, ELECTRON-PRC, V1, DOI 10.1002/elt2.1
[3]   Highly Conductive Poly(ethylene oxide)-Based Composite Polymer Electrolyte for Sodium Battery Applications [J].
Chiekezi, Obinna ;
He, Xinzi ;
Wang, Hui ;
Adebisi, Toyosi R. ;
Ayodele, Olubunmi ;
Deng, Tao ;
Reed, David ;
Wang, Chunsheng ;
Lu, Xiaochuan .
ACS APPLIED ENERGY MATERIALS, 2023, 6 (16) :8434-8442
[4]   Advanced cobalt-free cathode materials for sodium-ion batteries [J].
Chu, Shiyong ;
Guo, Shaohua ;
Zhou, Haoshen .
CHEMICAL SOCIETY REVIEWS, 2021, 50 (23) :13189-13235
[5]   Tailored nonwoven supported non-flammable quasi-solid electrolyte enables an ultra-stable sodium metal battery [J].
Das, Sayan ;
Pol, Vilas G. ;
Adyam, Venimadhav .
ENERGY ADVANCES, 2024, 3 (02) :419-423
[6]   Building Sodium Metal Battery with Polyisoprene-Based Air-Stable Single-Ion Gel Polymer Electrolyte [J].
Das, Sayan ;
Jana, Somdeb ;
Orsagh, Martin ;
Bys, Katarzyna ;
Mishra, Jaisankar ;
Uchman, Mariusz ;
Adyam, Venimadhav .
ACS APPLIED ENERGY MATERIALS, 2023, 6 (10) :5113-5121
[7]   Siloxane-Modified, Silica-Based lonogel as a Pseudosolid Electrolyte for Sodium-Ion Batteries [J].
DeBlock, Ryan H. ;
Wei, Qiulong ;
Ashby, David S. ;
Butts, Danielle M. ;
Whang, Grace J. ;
Choi, Christopher S. ;
Dunn, Bruce S. .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (01) :154-163
[8]   Promising Routes to a High Li+ Transference Number Electrolyte for Lithium Ion Batteries [J].
Diederichsen, Kyle M. ;
McShane, Eric J. ;
McCloskey, Bryan D. .
ACS ENERGY LETTERS, 2017, 2 (11) :2563-2575
[9]  
Evans J, ELECTROCHEMICAL MEAS, DOI [10.1016/0032-3861(87)90394-6, DOI 10.1016/0032-3861(87)90394-6]
[10]   A Composite Gel-Polymer/Glass-Fiber Electrolyte for Sodium-Ion Batteries [J].
Gao, Hongcai ;
Guo, Bingkun ;
Song, Jie ;
Park, Kyusung ;
Goodenough, John B. .
ADVANCED ENERGY MATERIALS, 2015, 5 (09)