Effects of balance training with visual input manipulations on balance performance and sensory integration in healthy young adults: a randomized controlled trial

被引:0
作者
Ketterer, Jakob [1 ,4 ]
Gollhofer, Albert [1 ]
Ringhof, Steffen [2 ]
Asslaender, Lorenz [3 ]
Granacher, Urs [1 ]
Gehring, Dominic [1 ]
机构
[1] Univ Freiburg, Dept Sport & Sport Sci Exercise & Human Movement S, Freiburg, Germany
[2] Univ Freiburg, Univ Med Ctr Freiburg, Fac Med, Dept Diagnost & Intervent Radiol, Freiburg, Germany
[3] Univ Konstanz, Human Performance Res Ctr, Dept Sport Sci, Constance, Germany
[4] Univ Freiburg, Dept Sport & Sport Sci Exercise & Human Movement S, Sandfangweg 4, D-79102 Freiburg, Germany
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Virtual reality; Sensory reweighting; Sensory-to-motor transformation; Feedback loop; Balance control model; Randomized controlled trial; ANKLE INSTABILITY; POSTURAL CONTROL; VIRTUAL-REALITY; SPECIFICITY; CEREBELLAR; MECHANISMS; PREVENTION;
D O I
10.1038/s41598-024-79736-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although balance training can improve balance across various populations, the underlying mechanisms, such as how balance training may alter sensory integration, remain unclear. This study examined the effects of balance training with visual input manipulations provided by virtual reality versus conventional balance training on measures of postural sway and sensory integration during balance control. Twenty-two healthy young adults were randomly allocated into a balance training group (BT) or a balance training with virtual reality group (BT + VR). The BT received traditional balance training, while the BT + VR additionally received visual manipulations during the 4-week balance training to elicit sensory conflicts. Static balance was measured in the form of center of pressure (COP) sway speed in trained (eyes open) and untrained (eyes closed) balance conditions. A model-based analysis quantified the sensory integration and feedback characteristics of the balance control mechanism. Herein, the visual weight quantifies the contribution of visual orientation information to balance while the proportional and derivative feedback loop-gains correct for deviations from the desired angular position and angular velocity, respectively. Significant main time effects were observed for the visual sensory contribution to balance (p = 0.002, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\:{\eta\:}_{p}<^>{2}$$\end{document} = 0.41) and for the derivative feedback loop-gain (p = 0.011, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\:{\eta\:}_{p}<^>{2}$$\end{document} = 0.29). Significant group-by-time interactions were observed for COP sway speed in the untrained task (p = 0.023, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\:{\eta\:}_{p}<^>{2}$$\end{document} = 0.23) in favor of BT + VR and in the proportional feedback loop-gain, with reductions only in the BT + VR group (p = 0.043, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\:{\eta\:}_{p}<^>{2}$$\end{document} = 0.2). BT + VR resulted in larger performance improvements compared with traditional BT in untrained tasks, most likely due to reduced reliance on visual information. This suggests that the systematic modulation of sensory inputs leads to enhanced capacity for motor adaptation in balance training.
引用
收藏
页数:12
相关论文
共 56 条
  • [1] Sensorimotor training in virtual reality: A review
    Adamovich, Sergei V.
    Fluet, Gerard G.
    Tunik, Eugene
    Merians, Alma S.
    [J]. NEUROREHABILITATION, 2009, 25 (01) : 29 - 44
  • [2] Effects of immersion in virtual reality on postural control
    Akizuki, H
    Uno, A
    Arai, K
    Morioka, S
    Ohyama, S
    Nishiike, S
    Tamura, K
    Takeda, N
    [J]. NEUROSCIENCE LETTERS, 2005, 379 (01) : 23 - 26
  • [3] Sensory-Challenge Balance Exercises Improve Multisensory Reweighting in Fall-Prone Older Adults
    Allison, Leslie K.
    Kiemel, Tim
    Jeka, John J.
    [J]. JOURNAL OF NEUROLOGIC PHYSICAL THERAPY, 2018, 42 (02): : 84 - 93
  • [4] Estimation of the visual contribution to standing balance using virtual reality
    Asslaender, Lorenz
    Albrecht, Matthias
    Diehl, Moritz
    Missen, Kyle J.
    Carpenter, Mark G.
    Streuber, Stephan
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [5] Sensory reweighting dynamics in human postural control
    Asslaender, Lorenz
    Peterka, Robert J.
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2014, 111 (09) : 1852 - 1864
  • [6] Increased visual dependence in Parkinson's disease
    Azulay, JP
    Mesure, S
    Amblard, B
    Pouget, J
    [J]. PERCEPTUAL AND MOTOR SKILLS, 2002, 95 (03) : 1106 - 1114
  • [7] Neural Correlates of Balance Skill Learning in Young and Older Individuals: A Systematic Review and Meta-analysis
    Bakker, Lisanne B. M.
    Lamoth, Claudine J. C.
    Vetrovsky, Tomas
    Gruber, Markus
    Caljouw, Simone R.
    Nieboer, Ward
    Taube, Wolfgang
    van Dieen, Jaap H.
    Granacher, Urs
    Hortobagyi, Tibor
    [J]. SPORTS MEDICINE-OPEN, 2024, 10 (01)
  • [8] Repeated exposure to virtual reality decreases reliance on visual inputs for balance control in healthy adults
    Barbanchon, Christophe
    Mouraux, Dominique
    Baudry, Stephane
    [J]. HUMAN MOVEMENT SCIENCE, 2024, 96
  • [9] Task-specific changes in motor evoked potentials of lower limb muscles after different training interventions
    Beck, S.
    Taube, W.
    Gruber, M.
    Amtage, F.
    Gollhofer, A.
    Schubert, M.
    [J]. BRAIN RESEARCH, 2007, 1179 : 51 - 60
  • [10] VISUAL CONTROL OF BALANCE IN CEREBELLAR AND PARKINSONIAN SYNDROMES
    BRONSTEIN, AM
    HOOD, JD
    GRESTY, MA
    PANAGI, C
    [J]. BRAIN, 1990, 113 : 767 - 779