Free-living monitoring of ALS progression in upper limbs using wearable accelerometers

被引:2
作者
Straczkiewicz, Marcin [1 ]
Burke, Katherine M. [2 ]
Calcagno, Narghes [3 ,4 ]
Premasiri, Alan [5 ]
Vieira, Fernando G. [5 ]
Onnela, Jukka-Pekka [1 ]
Berry, James D. [2 ]
机构
[1] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[2] Sean M Healey & AMG Ctr ALS, Neurol Clin Res Inst, Boston, MA USA
[3] IRCCS Ist Auxol Italiano, Dept Neurol, Milan, Italy
[4] IRCCS Ist Auxol Italiano, Lab Neurosci, Milan, Italy
[5] ALS Therapy Dev Inst, Watertown, MA USA
关键词
D O I
10.1186/s12984-024-01514-7
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
BackgroundWearable technology offers objective and remote quantification of disease progression in neurological diseases such as amyotrophic lateral sclerosis (ALS). Large population studies are needed to determine generalization and reproducibility of findings from pilot studies.MethodsA large cohort of patients with ALS (N = 202) wore wearable accelerometers on their dominant and non-dominant wrists for a week every two to four weeks and self-entered the ALS Functional Rating Scale-Revised (ALSFRS-RSE) in similar time intervals. Wearable device data were processed to quantify digital biomarkers on four upper limb movements: flexion, extension, supination, and pronation using previously developed and validated open-source methodology. In this study, we determined the association between digital biomarkers and disease progression, studied the impact of study design in terms of required sensor wear-time and sensor position, and determined the impact of self-reported disease onset location on upper limb movements.ResultsThe main investigation considered data from a sensor placed on the non-dominant wrist. Participants with higher ALSFRS-RSE scores performed more frequent and faster upper limb movements compared to participants with more advanced disease status. Digital biomarkers exhibited statistically significant change over time while their rate of change was more profound compared to survey responses. Using data from the dominant wrist and changing data inclusion criteria did not alter our findings. ALS disease onset location significantly impacted use of upper limbs. Results presented here were comparable to an earlier study on twenty patients with ALS.DiscussionDigital health technologies provide sensitive and objective means to quantify ALS disease progression. Interpretable approaches, such as the one used in this paper, can improve patient evaluation and hasten therapeutic development.
引用
收藏
页数:11
相关论文
共 36 条
[1]  
[Anonymous], 2020, HEALEY ALS platform trial
[2]   Development and assessment of the inter-rater and intra-rater reproducibility of a self-administration version of the ALSFRS-R [J].
Bakker, Leonhard A. ;
Schroeder, Carin D. ;
Tan, Harold H. G. ;
Vugts, Simone M. A. G. ;
van Eijk, Ruben P. A. ;
van Es, Michael A. ;
Visser-Meily, Johanna M. A. ;
van den Berg, Leonard H. .
JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2020, 91 (01) :75-81
[3]   Design and results of a smartphone-based digital phenotyping study to quantify ALS progression [J].
Berry, James D. ;
Paganoni, Sabrina ;
Carlson, Kenzie ;
Burke, Katherine ;
Weber, Harli ;
Staples, Patrick ;
Salinas, Joel ;
Chan, James ;
Green, Jordan R. ;
Connaghan, Kathryn ;
Barback, Josh ;
Onnela, Jukka Pekka .
ANNALS OF CLINICAL AND TRANSLATIONAL NEUROLOGY, 2019, 6 (05) :873-881
[4]   Smartphone data during the COVID-19 pandemic can quantify behavioral changes in people with ALS [J].
Beukenhorst, Anna L. ;
Collins, Ella ;
Burke, Katherine M. ;
Rahman, Syed Minhajur ;
Clapp, Margaret ;
Konanki, Sai Charan ;
Paganoni, Sabrina ;
Miller, Timothy M. ;
Chan, James ;
Onnela, Jukka-Pekka ;
Berry, James D. .
MUSCLE & NERVE, 2021, 63 (02) :258-262
[5]   A simple correction for multiple comparisons in interval mapping genome scans [J].
Cheverud, JM .
HEREDITY, 2001, 87 (1) :52-58
[6]   Patient reported outcomes in ALS: characteristics of the self-entry ALS Functional Rating Scale-revised and the Activities-specific Balance Confidence Scale [J].
Chew, Sheena ;
Burke, Katherine M. ;
Collins, Ella ;
Church, Reagan ;
Paganoni, Sabrina ;
Nicholson, Katharine ;
Babu, Suma ;
Scalia, Jennifer B. ;
De Marchi, Fabiola ;
Ellrodt, Amy L. ;
Moura, Lidia M. V. R. ;
Chan, James ;
Berry, James D. .
AMYOTROPHIC LATERAL SCLEROSIS AND FRONTOTEMPORAL DEGENERATION, 2021, 22 (7-8) :467-477
[7]   Validation of Accelerometer Wear and Nonwear Time Classification Algorithm [J].
Choi, Leena ;
Liu, Zhouwen ;
Matthews, Charles E. ;
Buchowski, Maciej S. .
MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2011, 43 (02) :357-364
[8]   From wearable sensor data to digital biomarker development: ten lessons learned and a framework proposal [J].
Daniore, Paola ;
Nittas, Vasileios ;
Haag, Christina ;
Bernard, Juergen ;
Gonzenbach, Roman ;
von Wyl, Viktor .
NPJ DIGITAL MEDICINE, 2024, 7 (01)
[9]   Physical activity using wrist-worn accelerometers: comparison of dominant and non-dominant wrist [J].
Dieu, Olivier ;
Mikulovic, Jacques ;
Fardy, Paul S. ;
Bui-Xuan, Gilles ;
Beghin, Laurent ;
Vanhelst, Jeremy .
CLINICAL PHYSIOLOGY AND FUNCTIONAL IMAGING, 2017, 37 (05) :525-529
[10]  
encals, ALS Functional Rating Scale Revised (ALS-FRS-R)