Guarding Polyominoes Under k-Hop Visibility

被引:0
|
作者
Filtser, Omrit [1 ]
Krohn, Erik [2 ]
Nilsson, Bengt J. [3 ]
Rieck, Christian [4 ]
Schmidt, Christiane [5 ]
机构
[1] Open Univ Israel, Dept Math & Comp Sci, 1 Univ Rd, IL-4353701 Raanana, Israel
[2] Univ Wisconsin Oshkosh, Dept Comp Sci, Oshkosh, WI 54904 USA
[3] Malmo Univ, Dept Mat Sci & Appl Math, Nordenskioldsgatan 1, S-20506 Malmo, Sweden
[4] TU Braunschweig, Dept Comp Sci, Muhlenpfordstr 23, D-38106 Braunschweig, Germany
[5] Linkoping Univ, Dept Sci & Technol, S-60174 Norrkoping, Sweden
关键词
Art Gallery problem; <italic>k</italic>-hop visibility; Polyominoes; VC dimension; Approximation; <italic>k</italic>-hop dominating set; POLYGON DECOMPOSITION; PLANAR GRAPHS; APPROXIMATION; SET; (K;
D O I
10.1007/s00453-024-01292-7
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study the Art Gallery Problem under k-hop visibility in polyominoes. In this visibility model, two unit squares of a polyomino can see each other if and only if the shortest path between the respective vertices in the dual graph of the polyomino has length at most k. In this paper, we show that the VC dimension of this problem is 3 in simple polyominoes, and 4 in polyominoes with holes. Furthermore, we provide a reduction from Planar Monotone 3Sat, thereby showing that the problem is NP-complete even in thin polyominoes (i.e., polyominoes that do not a contain a 2x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} block of cells). Complementarily, we present a linear-time 4-approximation algorithm for simple 2-thin polyominoes (which do not contain a 3x3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\times 3$$\end{document} block of cells) for all k is an element of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\in {\mathbb {N}}$$\end{document}.
引用
收藏
页码:572 / 593
页数:22
相关论文
共 50 条
  • [1] Guarding Polyominoes Under k-Hop Visibility
    Filtser, Omrit
    Krohn, Erik
    Nilsson, Bengt J.
    Rieck, Christian
    Schmidt, Christiane
    LATIN 2024: THEORETICAL INFORMATICS, PT I, 2024, 14578 : 288 - 302
  • [2] Guarding Polyominoes
    Biedl, Therese
    Irfan, Mohammad T.
    Iwerks, Justin
    Kim, Joondong
    Mitchell, Joseph S. B.
    COMPUTATIONAL GEOMETRY (SCG 11), 2011, : 387 - 396
  • [3] On the k-Hop Domination Numbers of Spanning Trees of Unicyclic Graphs
    Jindaluang, Wattana
    Juneam, Nopadon
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (01): : 9 - 17
  • [4] A Distributed Approach to Constructing k-Hop Connected Dominating Set in Ad Hoc Networks
    Wang, Jiahong
    Yonamine, Yuhiro
    Kodama, Eiichiro
    Takata, Toyoo
    2013 19TH IEEE INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS 2013), 2013, : 357 - 364
  • [5] Approximability of guarding weak visibility polygons
    Bhattacharya, Pritam
    Ghosh, Subir Kumar
    Roy, Bodhayan
    DISCRETE APPLIED MATHEMATICS, 2017, 228 : 109 - 129
  • [6] Computational Complexity of the r-visibility Guard Set Problem for Polyominoes
    Iwamoto, Chuzo
    Kume, Toshihiko
    DISCRETE AND COMPUTATIONAL GEOMETRY AND GRAPHS, JCDCGG 2013, 2014, 8845 : 87 - 95
  • [7] Non-simple polyominoes of Kőnig type and their canonical module
    Dinu, Rodica
    Navarra, Francesco
    JOURNAL OF ALGEBRA, 2025, 673 : 351 - 384
  • [8] Guarding Orthogonal Art Galleries with Sliding k-Transmitters: Hardness and Approximation
    Biedl, Therese
    Chan, Timothy M.
    Lee, Stephanie
    Mehrabi, Saeed
    Montecchiani, Fabrizio
    Vosoughpour, Hamideh
    Yu, Ziting
    ALGORITHMICA, 2019, 81 (01) : 69 - 97
  • [9] Guarding Orthogonal Art Galleries with Sliding k-Transmitters: Hardness and Approximation
    Therese Biedl
    Timothy M. Chan
    Stephanie Lee
    Saeed Mehrabi
    Fabrizio Montecchiani
    Hamideh Vosoughpour
    Ziting Yu
    Algorithmica, 2019, 81 : 69 - 97
  • [10] K-adaptability in stochastic combinatorial optimization under objective uncertainty
    Buchheim, Christoph
    Pruente, Jonas
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 277 (03) : 953 - 963