MARBLE: interpretable representations of neural population dynamics using geometric deep learning

被引:0
|
作者
Gosztolai, Adam [1 ]
Peach, Robert L. [2 ,3 ]
Arnaudon, Alexis [4 ]
Barahona, Mauricio [5 ]
Vandergheynst, Pierre [6 ]
机构
[1] Med Univ Vienna, AI Inst, Vienna, Austria
[2] Univ Hosp Wurzburg, Dept Neurol, Wurzburg, Germany
[3] Imperial Coll London, Dept Brain Sci, London, England
[4] EPFL, Blue Brain Project, Campus Biotech, Geneva, Switzerland
[5] Imperial Coll London, Dept Math, London, England
[6] Ecole Polytech Fed Lausanne, Signal Proc Lab LTS2, Lausanne, Switzerland
关键词
COMPUTATION; TIME;
D O I
10.1038/s41592-024-02582-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The dynamics of neuron populations commonly evolve on low-dimensional manifolds. Thus, we need methods that learn the dynamical processes over neural manifolds to infer interpretable and consistent latent representations. We introduce a representation learning method, MARBLE, which decomposes on-manifold dynamics into local flow fields and maps them into a common latent space using unsupervised geometric deep learning. In simulated nonlinear dynamical systems, recurrent neural networks and experimental single-neuron recordings from primates and rodents, we discover emergent low-dimensional latent representations that parametrize high-dimensional neural dynamics during gain modulation, decision-making and changes in the internal state. These representations are consistent across neural networks and animals, enabling the robust comparison of cognitive computations. Extensive benchmarking demonstrates state-of-the-art within- and across-animal decoding accuracy of MARBLE compared to current representation learning approaches, with minimal user input. Our results suggest that a manifold structure provides a powerful inductive bias to develop decoding algorithms and assimilate data across experiments.
引用
收藏
页码:612 / 620
页数:25
相关论文
共 50 条
  • [1] Interpretable Deep Learning for Marble Tiles Sorting
    Ouzounis, Athanasios G.
    Sidiropoulos, George K.
    Papakostas, George A.
    Sarafis, Ilias T.
    Stamkos, Andreas
    Solakis, George
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON DEEP LEARNING THEORY AND APPLICATIONS (DELTA), 2021, : 101 - 108
  • [2] Geometric deep learning on molecular representations
    Atz, Kenneth
    Grisoni, Francesca
    Schneider, Gisbert
    NATURE MACHINE INTELLIGENCE, 2021, 3 (12) : 1023 - 1032
  • [3] Geometric deep learning on molecular representations
    Kenneth Atz
    Francesca Grisoni
    Gisbert Schneider
    Nature Machine Intelligence, 2021, 3 : 1023 - 1032
  • [4] Learning Invariant Riemannian Geometric Representations Using Deep Nets
    Lohit, Suhas
    Turaga, Pavan
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 1329 - 1338
  • [5] Learning Linear Representations of Nonlinear Dynamics Using Deep Learning
    Ahmed, Akhil
    Del Rio-Chanona, Ehecatl Antonio
    Mercangoz, Mehmet
    IFAC PAPERSONLINE, 2022, 55 (12): : 162 - 169
  • [6] SKELETAL POINT REPRESENTATIONS WITH GEOMETRIC DEEP LEARNING
    Khargonkar, Ninad
    Paniagua, Beatriz
    Vicory, Jared
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [7] Learning interpretable representations of entanglement in quantum optics experiments using deep generative models
    Flam-Shepherd, Daniel
    Wu, Tony C.
    Gu, Xuemei
    Cervera-Lierta, Alba
    Krenn, Mario
    Aspuru-Guzik, Alan
    NATURE MACHINE INTELLIGENCE, 2022, 4 (06) : 544 - 554
  • [8] Learning interpretable representations of entanglement in quantum optics experiments using deep generative models
    Daniel Flam-Shepherd
    Tony C. Wu
    Xuemei Gu
    Alba Cervera-Lierta
    Mario Krenn
    Alán Aspuru-Guzik
    Nature Machine Intelligence, 2022, 4 : 544 - 554
  • [9] The Structure of Deep Neural Network for Interpretable Transfer Learning
    Kim, Dowan
    Lim, Woohyun
    Hong, Minye
    Kim, Hyeoncheol
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2019, : 181 - 184
  • [10] An accurate and interpretable deep learning model for environmental properties prediction using hybrid molecular representations
    Zhang, Jun
    Wang, Qin
    Su, Yang
    Jin, Saimeng
    Ren, Jingzheng
    Eden, Mario
    Shen, Weifeng
    AICHE JOURNAL, 2022, 68 (06)