Dark matter raining on DUNE and other large volume detectors

被引:2
作者
Acevedo, Javier F. [1 ]
Berger, Joshua [2 ]
Denton, Peter B. [3 ]
机构
[1] SLAC Natl Accelerator Lab, Particle Theory Grp, Stanford, CA 94035 USA
[2] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA
[3] Brookhaven Natl Lab, Phys Dept, High Energy Theory Grp, Upton, NY 11973 USA
基金
美国能源部;
关键词
Particle Nature of Dark Matter; Specific BSM Phenomenology; Models for Dark Matter; New Light Particles;
D O I
10.1007/JHEP11(2024)011
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Direct detection is a powerful means of searching for particle physics evidence of dark matter (DM) heavier than about a GeV with O(kiloton) volume, low-threshold detectors. In many scenarios, some fraction of the DM may be boosted to large velocities enhancing and generally modifying possible detection signatures. We investigate the scenario where 100% of the DM is boosted at the Earth due to new attractive long-range forces. This leads to two main improvements in detection capabilities: (1) the large boost allows for detectable signatures of DM well below a GeV at large-volume neutrino detectors, such as DUNE, Super-K, Hyper-K, and JUNO, as possible DM detectors, and (2) the flux at the Earth's surface is enhanced by a focusing effect. In addition, the model leads to a significant anisotropy in the signal with the DM flowing dominantly vertically at the Earth's surface instead of the typical approximately isotropic DM signal. We develop the theory behind this model and also calculate realistic constraints using a detailed GENIE simulation of the signal inside detectors.
引用
收藏
页数:28
相关论文
共 86 条
[1]   The design and performance of IceCube DeepCore [J].
Abbasi, R. ;
Abdou, Y. ;
Abu-Zayyad, T. ;
Ackermann, M. ;
Adams, J. ;
Aguilar, J. A. ;
Ahlers, M. ;
Allen, M. M. ;
Altmann, D. ;
Andeen, K. ;
Auffenberg, J. ;
Bai, X. ;
Baker, M. ;
Barwick, S. W. ;
Bay, R. ;
Alba, J. L. Bazo ;
Beattie, K. ;
Beatty, J. J. ;
Bechet, S. ;
Becker, J. K. ;
Becker, K. -H. ;
Benabderrahmane, M. L. ;
BenZvi, S. ;
Berdermann, J. ;
Berghaus, P. ;
Berley, D. ;
Bernardini, E. ;
Bertrand, D. ;
Besson, D. Z. ;
Bindig, D. ;
Bissok, M. ;
Blaufuss, E. ;
Blumenthal, J. ;
Boersma, D. J. ;
Bohm, C. ;
Bose, D. ;
Boeser, S. ;
Botner, O. ;
Brown, A. M. ;
Buitink, S. ;
Caballero-Mora, K. S. ;
Carson, M. ;
Chirkin, D. ;
Christy, B. ;
Clevermann, F. ;
Cohen, S. ;
Colnard, C. ;
Cowen, D. F. ;
Silva, A. H. Cruz ;
D'Agostino, M. V. .
ASTROPARTICLE PHYSICS, 2012, 35 (10) :615-624
[2]  
Acevedo JF, 2025, Arxiv, DOI [arXiv:2405.02393, arXiv:2405.02393]
[3]   Evaporation barrier for dark matter in celestial bodies [J].
Acevedo, Javier F. ;
Leane, Rebecca K. ;
Smirnov, Juri .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (04)
[4]  
Adam T, 2015, Arxiv, DOI arXiv:1508.07166
[5]  
Adhikari Susmita., 2022, arXiv
[6]   (In)direct detection of boosted dark matter [J].
Agashe, Kaustubh ;
Cui, Yanou ;
Necib, Lina ;
Thaler, Jesse .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2014, (10)
[7]   Make dark matter charged again [J].
Agrawal, Prateek ;
Cyr-Racine, Francis-Yan ;
Randall, Lisa ;
Scholtz, Jakub .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (05)
[8]  
Ahn K., 2003, J. Korean Astron. Soc., V36
[9]   Detecting Light Dark Matter via Inelastic Cosmic Ray Collisions [J].
Alvey, James ;
Campos, Miguel D. ;
Fairbairn, Malcolm ;
You, Tevong .
PHYSICAL REVIEW LETTERS, 2019, 123 (26)
[10]   Directly Detecting MeV-Scale Dark Matter via Solar Reflection (vol 120, 141801, 2018) [J].
An, Haipeng ;
Pospelov, Maxim ;
Pradler, Josef ;
Ritz, Adam .
PHYSICAL REVIEW LETTERS, 2018, 121 (25)