Competition between long-range and short-range interactions in the voter model for opinion dynamics

被引:0
|
作者
Jacopo A. Garofalo [1 ]
Eugenio Lippiello [1 ]
Fabrizio Rippa [1 ]
机构
[1] University of Campania “Luigi Vanvitelli”,Department of Mathematics and Physics
关键词
D O I
10.1140/epjb/s10051-025-00900-x
中图分类号
学科分类号
摘要
The voter model is a widely used framework in sociophysics to model opinion formation based on local interactions between individuals. In this work, we investigate how the spread of consensus is affected by introducing long-range interactions. Specifically, we study a one-dimensional voter model where a fraction γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} of links connect individuals at distances r drawn from a distribution decaying as r-σ-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r^{-\sigma -1}$$\end{document}. Our results reveal that even a small fraction of long-range interactions fundamentally alters the system’s asymptotic behavior. When long-range interactions decay rapidly σ>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma > 2$$\end{document}, their influence is restricted to distances beyond a time-dependent threshold, r∗(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r^*(t)$$\end{document}. For r<r∗(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r < r^*(t)$$\end{document}, the system exhibits short-range dynamics characterized by a Gaussian-like correlation function and a diffusion-driven growth of the correlation length, L(t)∼t1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(t) \sim t^{1/2}$$\end{document}. However, for r>r∗(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r > r^*(t)$$\end{document}, the correlation function transitions to a power-law decay, r-σ-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r^{-\sigma -1}$$\end{document}, highlighting the capacity of long-range links to propagate consensus across greater distances. When long-range interactions decay more slowly (σ<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma < 2$$\end{document}), they dominate the dynamics at all scales, leading to behavior akin to a system with only long-range interactions. Notably, in the regime σ<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma < 1$$\end{document} long-range links induce a stationary steady state, even for small γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Crossover between a short-range and a long-range Ising model
    Nakada, Taro
    Rikvold, Per Arne
    Mori, Takashi
    Nishino, Masamichi
    Miyashita, Seiji
    PHYSICAL REVIEW B, 2011, 84 (05):
  • [2] Periodic patterns for a model involving short-range and long-range interactions
    Fall, Mouhamed Moustapha
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 175 : 73 - 107
  • [3] SPIN-GLASS MODEL WITH SHORT-RANGE AND LONG-RANGE INTERACTIONS
    BOWMAN, D
    HALLEY, JW
    PHYSICAL REVIEW B, 1982, 25 (03): : 1892 - 1920
  • [5] LONG-RANGE VERSUS SHORT-RANGE SURFACE INTERACTIONS
    不详
    APPLIED CATALYSIS, 1990, 62 (01): : N7 - N7
  • [6] The Crossover Region Between Long-Range and Short-Range Interactions for the Critical Exponents
    Brezin, E.
    Parisi, G.
    Ricci-Tersenghi, F.
    JOURNAL OF STATISTICAL PHYSICS, 2014, 157 (4-5) : 855 - 868
  • [7] The Crossover Region Between Long-Range and Short-Range Interactions for the Critical Exponents
    E. Brezin
    G. Parisi
    F. Ricci-Tersenghi
    Journal of Statistical Physics, 2014, 157 : 855 - 868
  • [8] STUDY OF AN ISING-MODEL WITH COMPETING LONG-RANGE AND SHORT-RANGE INTERACTIONS
    LOW, U
    EMERY, VJ
    FABRICIUS, K
    KIVELSON, SA
    PHYSICAL REVIEW LETTERS, 1994, 72 (12) : 1918 - 1921
  • [9] ISING MODEL WITH A LONG-RANGE INTERACTION IN PRESENCE OF RESIDUAL SHORT-RANGE INTERACTIONS
    BAKER, GA
    PHYSICAL REVIEW, 1963, 130 (04): : 1406 - +
  • [10] Short-range exchange and long-range dipole interactions in a triangular planar model
    Rastelli, E
    Regina, S
    Tassi, A
    PHYSICAL REVIEW B, 2003, 67 (09):