Automatic segmentation model and machine learning model grounded in ultrasound radiomics for distinguishing between low malignant risk and intermediate-high malignant risk of adnexal masses

被引:0
作者
Liu, Lu [1 ]
Cai, Wenjun [2 ]
Zheng, Feibo [3 ]
Tian, Hongyan [1 ]
Li, Yanping [1 ]
Wang, Ting [1 ]
Chen, Xiaonan [4 ]
Zhu, Wenjing [5 ]
机构
[1] Shenzhen Univ, South China Hosp, Med Sch, Dept Ultrasound Med, Shenzhen, Peoples R China
[2] Shenzhen Univ, Gen Hosp, Med Sch, Dept Ultrasound, Shenzhen, Peoples R China
[3] Univ Hlth & Rehabil Sci, Qingdao Hosp, Qingdao Municipal Hosp, Dept Nucl Med, Qingdao, Peoples R China
[4] China Med Univ, Dept Urol, Shengjing Hosp, Shenyang, Peoples R China
[5] Univ Hlth & Rehabil Sci, Qingdao Hosp, Qingdao Municipal Hosp, Med Res Dept, Qingdao, Peoples R China
关键词
Ultrasound; Segmentation; Machine learning; Deep learning; Adnexal mass; OVARIAN-CANCER; DIAGNOSIS; STATISTICS; BENIGN; IMAGES;
D O I
10.1186/s13244-024-01874-7
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objective To develop an automatic segmentation model to delineate the adnexal masses and construct a machine learning model to differentiate between low malignant risk and intermediate-high malignant risk of adnexal masses based on ovarian-adnexal reporting and data system (O-RADS). Methods A total of 663 ultrasound images of adnexal mass were collected and divided into two sets according to experienced radiologists: a low malignant risk set (n = 446) and an intermediate-high malignant risk set (n = 217). Deep learning segmentation models were trained and selected to automatically segment adnexal masses. Radiomics features were extracted utilizing a feature analysis system in Pyradiomics. Feature selection was conducted using the Spearman correlation analysis, Mann-Whitney U-test, and least absolute shrinkage and selection operator (LASSO) regression. A nomogram integrating radiomic and clinical features using a machine learning model was established and evaluated. The SHapley Additive exPlanations were used for model interpretability and visualization. Results The FCN ResNet101 demonstrated the highest segmentation performance for adnexal masses (Dice similarity coefficient: 89.1%). Support vector machine achieved the best AUC (0.961, 95% CI: 0.925-0.996). The nomogram using the LightGBM algorithm reached the best AUC (0.966, 95% CI: 0.927-1.000). The diagnostic performance of the nomogram was comparable to that of experienced radiologists (p > 0.05) and outperformed that of less-experienced radiologists (p < 0.05). The model significantly improved the diagnostic accuracy of less-experienced radiologists. Conclusions The segmentation model serves as a valuable tool for the automated delineation of adnexal lesions. The machine learning model exhibited commendable classification capability and outperformed the diagnostic performance of less-experienced radiologists. Critical relevance statement The ultrasound radiomics-based machine learning model holds the potential to elevate the professional ability of less-experienced radiologists and can be used to assist in the clinical screening of ovarian cancer. Key Points We developed an image segmentation model to automatically delineate adnexal masses. We developed a model to classify adnexal masses based on O-RADS. The machine learning model has achieved commendable classification performance. The machine learning model possesses the capability to enhance the proficiency of less-experienced radiologists. We used SHapley Additive exPlanations to interpret and visualize the model.
引用
收藏
页数:15
相关论文
共 45 条
[1]   GI-RADS reporting system for ultrasound evaluation of adnexal masses in clinical practice: a prospective multicenter study [J].
Amor, F. ;
Alcazar, J. L. ;
Vaccaro, H. ;
Leon, M. ;
Iturra, A. .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2011, 38 (04) :450-455
[2]   O-RADS US Risk Stratification and Management System: A Consensus Guideline from the ACR Ovarian-Adnexal Reporting and Data System Committee [J].
Andreotti, Rochelle F. ;
Timmerman, Dirk ;
Strachowski, Lori M. ;
Froyman, Wouter ;
Benacerraf, Beryl R. ;
Bennett, Genevieve L. ;
Bourne, Tom ;
Brown, Douglas L. ;
Coleman, Beverly G. ;
Frates, Mary C. ;
Goldstein, Steven R. ;
Hamper, Ulrike H. ;
Horrow, Mindy M. ;
Hernanz-Schulman, Marta ;
Reinhold, Caroline ;
Rose, Stephen L. ;
Whitcomb, Brad P. ;
Wolfman, Wendy L. ;
Glanc, Phyllis .
RADIOLOGY, 2020, 294 (01) :168-185
[3]   Comparison of O-RADS, GI-RADS, and IOTA simple rules regarding malignancy rate, validity, and reliability for diagnosis of adnexal masses [J].
Basha, Mohammad Abd Alkhalik ;
Metwally, Maha Ibrahime ;
Gamil, Shrif A. ;
Khater, Hamada M. ;
Aly, Sameh Abdelaziz ;
El Sammak, Ahmed A. ;
Zaitoun, Mohamed M. A. ;
Khattab, Enass M. ;
Azmy, Taghreed M. ;
Alayouty, Nader Ali ;
Mohey, Nesreen ;
Almassry, Hosam Nabil ;
Yousef, Hala Y. ;
Ibrahim, Safaa A. ;
Mohamed, Ekramy A. ;
Mohamed, Abd El Motaleb ;
Afifi, Amira Hamed Mohamed ;
Harb, Ola A. ;
Algazzar, Hesham Youssef .
EUROPEAN RADIOLOGY, 2021, 31 (02) :674-684
[4]   Ultrasound image analysis using deep neural networks for discriminating between benign and malignant ovarian tumors: comparison with expert subjective assessment [J].
Christiansen, F. ;
Epstein, E. L. ;
Smedberg, E. ;
Akerlund, M. ;
Smith, K. ;
Epstein, E. .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2021, 57 (01) :155-163
[5]   A MORPHOLOGY INDEX BASED ON SONOGRAPHIC FINDINGS IN OVARIAN-CANCER [J].
DEPRIEST, PD ;
SHENSON, D ;
FRIED, A ;
HUNTER, JE ;
ANDREWS, SJ ;
GALLION, HH ;
PAVLIK, EJ ;
KRYSCIO, RJ ;
VANNAGELL, JR .
GYNECOLOGIC ONCOLOGY, 1993, 51 (01) :7-11
[6]   Serial ultrasonographic evaluation of ovarian abnormalities with a morphology index [J].
Elder, Jeffrey W. ;
Pavlik, Edward J. ;
Long, Ashleigh ;
Miller, Rachel W. ;
DeSimone, Christopher P. ;
Hoff, John T. ;
Ueland, Walker R. ;
Kryscio, Richard J. ;
van Nagell, John R., Jr. ;
Ueland, Frederick R. .
GYNECOLOGIC ONCOLOGY, 2014, 135 (01) :8-12
[7]   Risk of complications in patients with conservatively managed ovarian tumours (IOTA5): a 2-year interim analysis of a multicentre, prospective, cohort study [J].
Froyman, Wouter ;
Landolfo, Chiara ;
De Cock, Bavo ;
Wynants, Laure ;
Sladkevicius, Povilas ;
Testa, Antonia Carla ;
Van Holsbeke, Caroline ;
Domali, Ekaterini ;
Fruscio, Robert ;
Epstein, Elisabeth ;
dos Santos Bernardo, Maria Jose ;
Franchi, Dorella ;
Kudla, Marek Jerzy ;
Chiappa, Valentina ;
Alcazar, Juan Luis ;
Leone, Francesco Paolo Giuseppe ;
Buonomo, Francesca ;
Hochberg, Lauri ;
Coccia, Maria Elisabetta ;
Guerriero, Stefano ;
Deo, Nandita ;
Jokubkiene, Ligita ;
Kayser, Jeroen ;
Coosemans, An ;
Vergote, Ignace ;
Verbakel, Jan Yvan ;
Bourne, Tom ;
Van Calster, Ben ;
Valentin, Lil ;
Timmerman, Dirk .
LANCET ONCOLOGY, 2019, 20 (03) :448-458
[8]   Validation of the Performance of International Ovarian Tumor Analysis (IOTA) Methods in the Diagnosis of Early Stage Ovarian Cancer in a Non-Screening Population [J].
Froyman, Wouter ;
Wynants, Laure ;
Landolfo, Chiara ;
Bourne, Tom ;
Valentin, Lil ;
Testa, Antonia ;
Sladkevicius, Povilas ;
Franchi, Dorella ;
Fischerova, Daniela ;
Savelli, Luca ;
Van Calster, Ben ;
Timmerman, Dirk .
DIAGNOSTICS, 2017, 7 (02)
[9]   The optimal organization of gynecologic oncology services: a systematic review [J].
Fung-Kee-Fung, M. ;
Kennedy, E. B. ;
Biagi, J. ;
Colgan, T. ;
D'Souza, D. ;
Elit, L. M. ;
Hunter, A. ;
Irish, J. ;
McLeod, R. ;
Rosen, B. .
CURRENT ONCOLOGY, 2015, 22 (04) :E282-E293
[10]   Deep learning-enabled pelvic ultrasound images for accurate diagnosis of ovarian cancer in China: a retrospective, multicentre, diagnostic study [J].
Gao, Yue ;
Zeng, Shaoqing ;
Xu, Xiaoyan ;
Li, Huayi ;
Yao, Shuzhong ;
Song, Kun ;
Li, Xiao ;
Chen, Lingxi ;
Tang, Junying ;
Xing, Hui ;
Yu, Zhiying ;
Zhang, Qinghua ;
Zeng, Shue ;
Yi, Cunjian ;
Xie, Hongning ;
Xiong, Xiaoming ;
Cai, Guangyao ;
Wang, Zhi ;
Wu, Yuan ;
Chi, Jianhua ;
Jiao, Xiaofei ;
Qin, Yan ;
Mao, Xiaogang ;
Chen, Yu ;
Jin, Xin ;
Mo, Qingqing ;
Chen, Pingbo ;
Huang, Yi ;
Shi, Yushuang ;
Wang, Junmei ;
Zhou, Yimin ;
Ding, Shuping ;
Zhu, Shan ;
Liu, Xin ;
Dong, Xiangyi ;
Cheng, Lin ;
Zhu, Linlin ;
Cheng, Huanhuan ;
Cha, Li ;
Hao, Yanli ;
Jin, Chunchun ;
Zhang, Ludan ;
Zhou, Peng ;
Sun, Meng ;
Xu, Qin ;
Chen, Kehua ;
Gao, Zeyan ;
Zhang, Xu ;
Ma, Yuanyuan ;
Liu, Yan .
LANCET DIGITAL HEALTH, 2022, 4 (03) :E179-E187