Deep learning-based classification of hemiplegia and diplegia in cerebral palsy using postural control analysis

被引:0
|
作者
Valdivia, Javiera T. Arias [1 ]
Rojas, Valeska Gatica [2 ]
Astudillo, Cesar A. [3 ]
机构
[1] Univ Talca, Fac Engn, Doctorado Sistemas Ingn, Curico 3340000, Chile
[2] Univ Talca, Fac Hlth Sci, Talca 3460000, Chile
[3] Univ Talca, Fac Engn, Dept Comp Sci, Curico 3340000, Chile
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Artificial intelligence (AI); Cerebral palsy; Data augmentation; Data classification; Deep learning; Diplegia; Force plate; Gated recurrent unit (GRU); Hemiplegia; Long short-term memory (LSTM); Machine learning; Pediatric neurology; Postural control; Time series analysis; STANDING BALANCE; GAIT EVENTS; PREDICTION; DIAGNOSIS; CHILDREN; HEALTHY; TRIAL;
D O I
10.1038/s41598-025-93166-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cerebral palsy (CP) is a neurological condition that affects mobility and motor control, presenting significant challenges for accurate diagnosis, particularly in cases of hemiplegia and diplegia. This study proposes a method of classification utilizing Recurrent Neural Networks (RNNs) to analyze time series force data obtained via an AMTI platform. The proposed research focuses on optimizing these models through advanced techniques such as automatic parameter optimization and data augmentation, improving the accuracy and reliability in classifying these conditions. The results demonstrate the effectiveness of the proposed models in capturing complex temporal dynamics, with the Bidirectional Gated Recurrent Unit (BiGRU) and Long Short-Term Memory (LSTM) model achieving the highest performance, reaching an accuracy of 76.43%. These results outperform traditional approaches and offer a valuable tool for implementation in clinical settings. Moreover, significant differences in postural stability were observed among patients under different visual conditions, underscoring the importance of tailoring therapeutic interventions to each patient's specific needs.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Deep learning-based classification and segmentation for scalpels
    Su, Baiquan
    Zhang, Qingqian
    Gong, Yi
    Xiu, Wei
    Gao, Yang
    Xu, Lixin
    Li, Han
    Wang, Zehao
    Yu, Shi
    Hu, Yida David
    Yao, Wei
    Wang, Junchen
    Li, Changsheng
    Tang, Jie
    Gao, Li
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2023, 18 (05) : 855 - 864
  • [32] Deep Learning/Artificial Intelligence and Blood-Based DNA Epigenomic Prediction of Cerebral Palsy
    Bahado-Singh, Ray O.
    Vishweswaraiah, Sangeetha
    Aydas, Buket
    Mishra, Nitish Kumar
    Guda, Chittibabu
    Radhakrishna, Uppala
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (09)
  • [33] Deep learning-based classification and segmentation for scalpels
    Baiquan Su
    Qingqian Zhang
    Yi Gong
    Wei Xiu
    Yang Gao
    Lixin Xu
    Han Li
    Zehao Wang
    Shi Yu
    Yida David Hu
    Wei Yao
    Junchen Wang
    Changsheng Li
    Jie Tang
    Li Gao
    International Journal of Computer Assisted Radiology and Surgery, 2023, 18 : 855 - 864
  • [34] Rehabilitation of Patients with Hemiplegia Using Deep Learning Techniques to Control a Video Game
    Tipantocta, Fabricio
    Zambrano Vizuete, Marcelo
    Rosero, Ricardo
    Paredes, Wladimir
    Velasco, Eduardo
    APPLIED TECHNOLOGIES (ICAT 2019), PT II, 2020, 1194 : 400 - 410
  • [35] Deep Learning-Based Water Crystal Classification
    Thi, Hien Doan
    Andres, Frederic
    Quoc, Long Tran
    Emoto, Hiro
    Hayashi, Michiko
    Katsumata, Ken
    Oshide, Takayuki
    APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [36] Deep Learning-Based Classification of Diabetic Retinopathy
    Huang, Zhenjia
    PROCEEDINGS OF 2023 4TH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE FOR MEDICINE SCIENCE, ISAIMS 2023, 2023, : 371 - 375
  • [37] Deep Learning-Based Illumination Estimation Using Light Source Classification
    Koscevic, Karlo
    Subasic, Marko
    Loncaric, Sven
    IEEE ACCESS, 2020, 8 : 84239 - 84247
  • [38] DEEP LEARNING-BASED CLASSIFICATION OF SEISMIC EVENTS USING WAVEFORM DATA
    Vasti, Manka
    Dev, Amita
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2025, 42 (01): : 17 - 45
  • [39] Improved Bat Algorithm with Deep Learning-Based Biomedical ECG Signal Classification Model
    Obayya, Marwa
    Nemri, Nadhem
    Alharbi, Lubna A.
    Nour, Mohamed K.
    Alnfiai, Mrim M.
    Al-Hagery, Mohammed Abdullah
    Salem, Nermin M.
    Al Duhayyim, Mesfer
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (02): : 3151 - 3166
  • [40] Deep Learning-Based Classification of Hyperspectral Data
    Chen, Yushi
    Lin, Zhouhan
    Zhao, Xing
    Wang, Gang
    Gu, Yanfeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2094 - 2107