Multi-Scale Frequency Enhancement Network for Blind Image Deblurring

被引:0
作者
Xiang, Yawen [1 ]
Zhou, Heng [2 ,5 ]
Zhang, Xi [3 ]
Li, Chengyang [4 ,6 ]
Li, Zhongbo [1 ]
Xie, Yongqiang [1 ]
机构
[1] Acad Mil Sci, Inst Syst Engn, Beijing, Peoples R China
[2] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi, Peoples R China
[3] Xidian Univ, Sch Elect Engn, Xian, Peoples R China
[4] China Univ Petr, Coll Artificial Intelligence, Beijing, Peoples R China
[5] Jiangnan Univ, Jiangsu Prov Engn Lab Pattern Recognit & Computat, Wuxi, Peoples R China
[6] China Univ Petr, Beijing Key Lab Petr Data Min, Beijing, Peoples R China
基金
中国博士后科学基金;
关键词
blur perception; frequency enhancement; image deblurring; multi-scale features; separable convolution;
D O I
10.1049/ipr2.70036
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image deblurring is a fundamental preprocessing technique aimed at recovering clear and detailed images from blurry inputs. However, existing methods often struggle to effectively integrate multi-scale feature extraction with frequency enhancement, limiting their ability to reconstruct fine textures, especially in the presence of non-uniform blur. To address these challenges, we propose a multi-scale frequency enhancement network (MFENet) for blind image deblurring. MFENet introduces a multi-scale feature extraction module (MS-FE) based on depth-wise separable convolutions to capture rich multi-scale spatial and channel information. Furthermore, the proposed method employs a frequency enhanced blur perception module (FEBP) that utilizes wavelet transforms to extract high-frequency details and multi-strip pooling to perceive non-uniform blur. Experimental results on the GoPro and HIDE datasets demonstrate that our method achieves superior deblurring performance in both visual quality and objective evaluation metrics. Notably, in downstream object detection tasks, our blind image deblurring algorithm significantly improves detection accuracy, further validating its effectiveness and robustness in practical applications.
引用
收藏
页数:15
相关论文
共 50 条
[21]   ParaLkResNet: an efficient multi-scale image classification network [J].
Yu, Tongshuai ;
Liu, Ye ;
Liu, Hao ;
Chen, Ji ;
Wang, Xing .
VISUAL COMPUTER, 2024, 40 (07) :5057-5066
[22]   DNEFNET: Denoising and Frequency Domain Feature Enhancement Event Fusion Network for Image Deblurring [J].
Zhao, Kangkang ;
Chen, Yaojie ;
Li, Jianbo .
CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 84 (01) :745-762
[23]   Frequency Disentanglement Distillation Image Deblurring Network [J].
Liu, Yiming ;
Guo, Jianping ;
Yang, Sen ;
Liu, Ting ;
Zhou, Hualing ;
Liang, Mengzi ;
Li, Xi ;
Xu, Dahong .
SENSORS, 2021, 21 (14)
[24]   Adaptive Multi-Scale Fusion Blind Deblurred Generative Adversarial Network Method for Sharpening Image Data [J].
Zhu, Baoyu ;
Lv, Qunbo ;
Tan, Zheng .
DRONES, 2023, 7 (02)
[25]   MFENet: Multi-scale feature extraction network for images deblurring and segmentation of swinging wolfberry branch [J].
Xing, Zhenwei ;
Wang, Yutan ;
Qu, Aili ;
Yang, Chan .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 215
[26]   Self Augmented Deep Generative Network for Blind Image Deblurring [J].
Peng, Ke ;
Jiang, Zhiguo ;
Zhang, Haopeng .
OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY V, 2018, 10817
[27]   A CONVERGENT NEURAL NETWORK FOR NON-BLIND IMAGE DEBLURRING [J].
Zhao, Yanan ;
Li, Yuelong ;
Zhang, Haichuan ;
Monga, Vishal ;
Eldar, Yonina C. .
2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, :1505-1509
[28]   Multi-scale detail enhancement network for remote sensing road extraction [J].
Geng, Tingting ;
Cao, Yuan ;
Wang, Changqing .
EARTH SCIENCE INFORMATICS, 2025, 18 (03)
[29]   Image deblurring via multi-scale feature fusion and multi-input multi-output encoder-decoder [J].
Zhao Q. ;
Zhou D. ;
Yang H. ;
Wang C. ;
Li M. .
Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2022, 51 (10)
[30]   Hyperspectral image classification based on multi-scale hybrid convolutional network [J].
Yang, Yun ;
Zhou, Yao ;
Chen, Jia-ning .
CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2023, 38 (03) :368-377