Metabolic engineering for sustainable xylitol production from diverse carbon sources in Pichia pastoris

被引:2
作者
Lu, Xiaocong [1 ,3 ]
Chang, Mingxin [1 ,3 ]
Li, Xiangyu [1 ]
Cao, Wenbing [3 ]
Zhuang, Zhoukang [3 ]
Wu, Qian [3 ]
Yu, Tao [3 ]
Yu, Aiqun [1 ]
Tang, Hongting [2 ]
机构
[1] Tianjin Univ Sci & Technol, Coll Biotechnol, State Key Lab Food Nutr & Safety, Tianjin Key Lab Ind Microbiol,Key Lab Ind Fermenta, Tianjin 300457, Peoples R China
[2] Sun Yat Sen Univ, Sch Agr & Biotechnol, Shenzhen Campus, Shenzhen 518107, Peoples R China
[3] Chinese Acad Sci, Shenzhen Inst Synthet Biol, Shenzhen Inst Adv Technol, Ctr Synthet Biochem, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Metabolic engineering; Xylitol biosynthesis; Sustainable carbon sources; Pichia pastoris; SACCHAROMYCES-CEREVISIAE; GLUCOSE; DEHYDROGENASE; FERMENTATION; RECOMBINANT; CONVERSION; YEAST; EXPRESSION; STIPITIS; STRAINS;
D O I
10.1186/s12934-025-02683-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Xylitol, known for its health benefits, is a valuable compound in the food and pharmaceutical industries. However, conventional chemical production methods are often unsustainable for large-scale applications, prompting the need for alternative approaches. This study demonstrates a significant enhancement in xylitol production using microbial cell factories, optimized through metabolic engineering. Two synthetic pathways were combined, and the introduction of a novel NADPH-dependent xylitol dehydrogenase further boosted xylitol yields, achieving 0.14 g xylitol/g glucose-a record-high yield for microbial systems. Additionally, the use of sustainable feedstocks, such as glycerol and methanol, led to the production of 7000 mg/L xylitol with a yield of 0.35 g xylitol/g glycerol, and 250 mg/L xylitol from methanol. These results underscore the potential for eco-friendly, cost-effective xylitol production, providing a robust foundation for future industrial-scale biotechnological applications.
引用
收藏
页数:11
相关论文
共 32 条
[1]   Biological and Pharmacological Potential of Xylitol: A Molecular Insight of Unique Metabolism [J].
Ahuja, Vishal ;
Macho, Marketa ;
Ewe, Daniela ;
Singh, Manoj ;
Saha, Subhasish ;
Saurav, Kumar .
FOODS, 2020, 9 (11)
[2]  
Anna ME., 2021, Bioresour Technol, V346, P126296
[3]  
[Anonymous], 2011, U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry
[4]   Production of xylitol by recombinant Saccharomyces cerevisiae containing xylose reductase gene in repeated fed-batch and cell-recycle fermentations [J].
Bae, SM ;
Park, YC ;
Lee, TH ;
Kweon, DH ;
Choi, JH ;
Kim, SK ;
Ryu, YW ;
Seo, JH .
ENZYME AND MICROBIAL TECHNOLOGY, 2004, 35 (6-7) :545-549
[5]   Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris [J].
Cai, Peng ;
Duan, Xingpeng ;
Wu, Xiaoyan ;
Gao, Linhui ;
Ye, Min ;
Zhou, Yongjin J. .
NUCLEIC ACIDS RESEARCH, 2021, 49 (13) :7791-7805
[6]  
Cheng H, 2022, United States Patent Application, Patent No. 20220259622
[7]   Genetically engineered Pichia pastoris yeast for conversion of glucose to xylitol by a single-fermentation process [J].
Cheng, Hairong ;
Lv, Jiyang ;
Wang, Hengwei ;
Wang, Ben ;
Li, Zilong ;
Deng, Zixin .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2014, 98 (08) :3539-3552
[8]   Engineering Escherichia coli for xylitol production from glucose-xylose mixtures [J].
Cirino, Patrick C. ;
Chin, Jonathan W. ;
Ingram, Lonnie O. .
BIOTECHNOLOGY AND BIOENGINEERING, 2006, 95 (06) :1167-1176
[9]   Biotechnological production of xylitol from lignocellulosic wastes: A review [J].
de Albuquerque, Tiago Lima ;
da Silva, Ivanildo Jose, Jr. ;
de Macedo, Gorete Ribeiro ;
Ponte Rocha, Maria Valderez .
PROCESS BIOCHEMISTRY, 2014, 49 (11) :1779-1789
[10]  
Gassler T, 2019, METHODS MOL BIOL, V1923, P211, DOI 10.1007/978-1-4939-9024-5_9