Isolation and characterization of mung bean (Vigna radiata L.) rhizobia in Myanmar

被引:0
|
作者
Htwe, Aung Zaw [1 ,2 ]
Yamakawa, Takeo [3 ]
Ishibashi, Matsujiro [1 ,4 ]
Tsurumaru, Hirohito [1 ,4 ]
机构
[1] Kagoshima Univ, Fac Agr, Appl Microbiol Lab, 1-21-24 Korimoto, Kagoshima 8900065, Japan
[2] Yezin Agr Univ, Dept Agron, Nay Pyi Taw, Myanmar
[3] Setsunan Univ, Fac Agr, Dept Agr Sci & Technol, Lab Prod Ecol, Osaka, Japan
[4] Kagoshima Univ, United Grad Sch Agr Sci, Kagoshima, Japan
关键词
Bradyrhizobium; 16S rRNA gene; ITS; Nodulation; Mung bean; PHYLOGENETIC DIVERSITY; NITROGEN-FIXATION; STRAINS; REGIONS;
D O I
10.1007/s13199-024-01013-2
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
We collected soil samples from six major mung bean cropping regions in Myanmar: Sagaing, Mandalay, Nay Pyi Taw, and Magway in the tropical savanna climate zone and Bago and Yangon in the tropical monsoon climate zone. All fields grew mung bean for at least 5 years and had no history of rhizobial inoculation. Mung bean 'Yezin-11', a popular cultivar in Myanmar, was inoculated with soil suspensions. From the nodules formed on the roots, we isolated 55 rhizobial strains. Identification of the isolates revealed the dominant species of indigenous rhizobia in each region. We identified 53 Bradyrhizobium strains and 2 Ensifer strains. Bradyrhizobium yuanmingense was dominant in the tropical savanna zone and Bradyrhizobium sp. (B. liaoningense or B. diversitatis) and B. centrosematis were dominant in the tropical monsoon zone. Principal component analysis indicates that the dominance of B. yuanmingense in the tropical savanna zone might be due to high concentration of NO3-N and P2O5 in the soil. It also indicates that the dominance of B. centrosematis in the tropical monsoon zone might be caused by drastically low pH and high concentration of NH4 in the soil. Bradyrhizobium centrosematis YGN-M9, B. yuanmingense SGG-M3, and Bradyrhizobium sp. BGO-M5 significantly increased nodulation (nodule number and nodule dry weight), acetylene reduction activity, and shoot dry weight, respectively, relative to Ensifer terangae MDY-M6. Co-inoculation with these three strains increased nodulation significantly compared with single inoculation of BGO-M5. The characterization of mung bean rhizobia and selection of microbial inoculant candidates will be useful for the development of microbial inoculants in Myanmar.
引用
收藏
页码:51 / 63
页数:13
相关论文
共 50 条
  • [41] Exogenous brassinosteroids increases tolerance to shading by altering stress responses in mung bean (Vigna radiata L.)
    Chunjuan Liu
    Baili Feng
    Yufei Zhou
    Chang Liu
    Xiangwei Gong
    Photosynthesis Research, 2022, 151 : 279 - 294
  • [42] Value chain analysis of Mung Bean (Vigna radiata L. Wilczek thrive) in Kalu Woreda, Ethiopia
    Assefa, Zena Befkadu
    Dinku, Amare Molla
    Jemal, Abdulkerime Mohammed
    AGRICULTURE & FOOD SECURITY, 2022, 11 (01):
  • [43] Integration of comparative transcriptomics and WGCNA characterizes the regulation of anthocyanin biosynthesis in mung bean (Vigna radiata L.)
    Li, Chunxia
    Gao, Zexiang
    Hu, Weili
    Zhu, Xu
    Li, Youjun
    Li, Na
    Ma, Chao
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [44] TOLERANCE OF MUNG BEAN (Vigna radiata (L.) Wilczek) TO LACTIC ACID, A POTENTIAL HERBICIDE: GROWTH AND MORPHOLOGY
    Sumalapao, Derick Erl P.
    Tuppil, Caireen G.
    Urtula, Anton Angelo C.
    Valdestamon, Duane M.
    Villanueva, Leoncia Marie D.
    Ledesma, Nadine Adellia A.
    JOURNAL OF ANIMAL AND PLANT SCIENCES, 2018, 28 (01) : 138 - 145
  • [45] Alleviation of chromium toxicity in mung bean (Vigna radiata L.) using salicylic acid and Azospirillum brasilense
    Ali, Hafiz Haider
    Ilyas, Maimoona
    Zaheer, Muhammad Saqlain
    Hameed, Akhtar
    Ikram, Kamran
    Khan, Waqas ud Din
    Iqbal, Rashid
    Awan, Tahir Hussain
    Rizwan, Muhammad
    Mustafa, Abd El-Zaher M. A.
    Elshikh, Mohamed Soliman
    BMC PLANT BIOLOGY, 2023, 23 (01)
  • [46] Protein Engineering of Mung Bean (Vigna radiata (L.) Wilczek) 8Sα Globulin with Lactostatin
    Gamis, Ma. Carla
    Uy, Lawrence Yves
    Laurena, Antonio
    Hurtada, Wilma
    Torio, Mary Ann
    APPLIED SCIENCES-BASEL, 2020, 10 (24): : 1 - 18
  • [47] Replacement of Synthetic Nitrogenous Fertilizer by Human Hair Hydrolysates in Cultivation of Mung Bean (Vigna radiata L.)
    Choudhary, Babu Lal
    Raha, Priyankar
    Kundu, Arnab
    Rani, Mukta
    WASTE AND BIOMASS VALORIZATION, 2022, 13 (07) : 3147 - 3159
  • [48] Replacement of Synthetic Nitrogenous Fertilizer by Human Hair Hydrolysates in Cultivation of Mung Bean (Vigna radiata L.)
    Babu Lal Choudhary
    Priyankar Raha
    Arnab Kundu
    Mukta Rani
    Waste and Biomass Valorization, 2022, 13 : 3147 - 3159
  • [49] Physiological and yield response of mung bean (Vigna radiata (L.) Wilczek) to exogenous application of bioregulatory molecules
    Mitra, Raktim
    Kumar, Pramod
    PLANT PHYSIOLOGY REPORTS, 2024, 29 (02) : 343 - 355
  • [50] Understanding the genetics of Cercospora leaf spot (CLS) resistance in mung bean (Vigna radiata L. Wilczek)
    Jyoti Prakash Sahoo
    Kailash Chandra Samal
    Swapan Kumar Tripathy
    Devraj Lenka
    Pratikshya Mishra
    Laxmipreeya Behera
    Licon Kumar Acharya
    Sunil Kumar Sunani
    Biswaranjan Behera
    Tropical Plant Pathology, 2022, 47 : 703 - 717