Fractional Sobolev type spaces of functions of two variables via Riemann-Liouville derivatives

被引:0
|
作者
Idczak, Dariusz [1 ]
机构
[1] Univ Lodz, Fac Math & Comp Sci, Banacha 22, PL-90238 Lodz, Poland
关键词
Functions of two variables; Riemann-Liouville derivative; Weak derivative; Fractional absolute continuity; Fractional Sobolev type spaces; FUNDAMENTAL LEMMA; ORDER;
D O I
10.1007/s13540-024-00344-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce and study the spaces of fractionally absolutely continuous functions of two variables of any order and the fractional Sobolev type spaces of functions of two variables. Our approach is based on the Riemann-Liouville fractional integrals and derivatives. We investigate relations between these spaces as well as between the Riemann-Liouville and weak derivatives.
引用
收藏
页码:2892 / 2947
页数:56
相关论文
共 50 条
  • [21] Projectile motion via Riemann-Liouville calculus
    Ahmad, Bashir
    Batarfi, Hanan
    Nieto, Juan J.
    Otero-Zarraquinos, Oscar
    Shammakh, Wafa
    ADVANCES IN DIFFERENCE EQUATIONS, 2015, : 1 - 14
  • [22] QUASILINEARIZATION METHOD FOR CAUSAL TERMINAL VALUE PROBLEMS INVOLVING RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES
    Yakar, Coskun
    Arslan, Mehmet
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2019,
  • [23] Stability analysis of nonlinear fractional differential order systems with Caputo and Riemann-Liouville derivatives
    Alidousti, Javad
    Khoshsiar Ghaziani, Reza
    Bayati Eshkaftaki, Ali
    TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (05) : 1260 - 1278
  • [24] Approximation with continuous functions preserving fractal dimensions of the Riemann-Liouville operators of fractional calculus
    Yu, Binyan
    Liang, Yongshun
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (06) : 2805 - 2836
  • [25] Exactly solving some typical Riemann-Liouville fractional models by a general method of separation of variables
    Liu, Cheng-Shi
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2020, 72 (05)
  • [26] Projectile motion via Riemann-Liouville calculus
    Bashir Ahmad
    Hanan Batarfi
    Juan J Nieto
    Óscar Otero-Zarraquiños
    Wafa Shammakh
    Advances in Difference Equations, 2015
  • [27] Lyapunov-type inequality for a Riemann-Liouville fractional differential boundary value problem
    Al-Qurashi, Maysaa
    Ragoub, Lakhdar
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (06): : 1447 - 1452
  • [28] Fast algorithms for convolution quadrature of Riemann-Liouville fractional derivative
    Sun, Jing
    Nie, Daxin
    Deng, Weihua
    APPLIED NUMERICAL MATHEMATICS, 2019, 145 : 384 - 410
  • [29] Degenerate Linear Evolution Equations with the Riemann-Liouville Fractional Derivative
    Fedorov, V. E.
    Plekhanova, M. V.
    Nazhimov, R. R.
    SIBERIAN MATHEMATICAL JOURNAL, 2018, 59 (01) : 136 - 146
  • [30] Existence of Solutions for Riemann-Liouville Fractional Boundary Value Problem
    Xie, Wenzhe
    Xiao, Jing
    Luo, Zhiguo
    ABSTRACT AND APPLIED ANALYSIS, 2014,