HiQ-FPAR: A High-Quality and Value-added MODIS Global FPAR Product from 2000 to 2023

被引:0
|
作者
Yan, Kai [1 ]
Yu, Xinpei [2 ]
Liu, Jinxiu [2 ]
Wang, Jingrui [3 ]
Chen, Xiuzhi [3 ]
Pu, Jiabin [4 ]
Weiss, Marie [5 ]
Myneni, Ranga B. [4 ]
机构
[1] Beijing Normal Univ, Fac Geog Sci, Innovat Res Ctr Satellite Applicat IRCSA, Beijing 100875, Peoples R China
[2] China Univ Geosci, Sch Informat Engn, Beijing 100083, Peoples R China
[3] Sun Yat Sen Univ, Sch Atmospher Sci, Guangdong Prov Key Lab Climate Change & Nat Disast, Guangzhou 519082, Peoples R China
[4] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA
[5] Univ Avignon & Pays Vaucluse, Inst Natl Rech Agron, UAPV, INRA, 228 Route Aerodrome, F-84914 Avignon, France
基金
中国国家自然科学基金;
关键词
LEAF-AREA INDEX; TIME-SERIES; LAI; VALIDATION; VEGETATION; MODEL; TERRESTRIAL; ALGORITHM; RADIATION; FRACTION;
D O I
10.1038/s41597-025-04391-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Fraction of Absorbed Photosynthetically Active Radiation (FPAR) is essential for assessing vegetation's photosynthetic efficiency and ecosystem energy balance. While the MODIS FPAR product provides valuable global data, its reliability is compromised by noise, particularly under poor observation conditions like cloud cover. To solve this problem, we developed the Spatio-Temporal Information Composition Algorithm (STICA), which enhances MODIS FPAR by integrating quality control, spatio-temporal correlations, and original FPAR values, resulting in the High-Quality FPAR (HiQ-FPAR) product. HiQ-FPAR shows superior accuracy compared to MODIS FPAR and Sensor-Independent FPAR (SI-FPAR), with RMSE values of 0.130, 0.154, and 0.146, respectively, and R-2 values of 0.722, 0.630, and 0.717. Additionally, HiQ-FPAR exhibits smoother time series in 52.1% of global areas, compared to 44.2% for MODIS. Available on Google Earth Engine and Zenodo, the HiQ-FPAR dataset offers 500 m and 5 km resolution at an 8-day interval from 2000 to 2023, supporting a wide range of FPAR applications.
引用
收藏
页数:17
相关论文
共 3 条
  • [1] Sensor-independent LAI/FPAR CDR: reconstructing a global sensor-independent climate data record of MODIS and VIIRS LAI/FPAR from 2000 to 2022
    Pu, Jiabin
    Yan, Kai
    Roy, Samapriya
    Zhu, Zaichun
    Rautiainen, Miina
    Knyazikhin, Yuri
    Myneni, Ranga B.
    EARTH SYSTEM SCIENCE DATA, 2024, 16 (01) : 15 - 34
  • [2] HiQ-LAI: a high-quality reprocessed MODIS leaf area index dataset with better spatiotemporal consistency from 2000 to 2022
    Yan, Kai
    Wang, Jingrui
    Peng, Rui
    Yang, Kai
    Chen, Xiuzhi
    Yin, Gaofei
    Dong, Jinwei
    Weiss, Marie
    Pu, Jiabin
    Myneni, Ranga B.
    EARTH SYSTEM SCIENCE DATA, 2024, 16 (03) : 1601 - 1622
  • [3] Improvement of MODIS 8-Day LAI/FPAR Product with Temporal Filters to Generate High Quality Time-series Product
    Zhang, Huifang
    Shi, Runhe
    Zhong, Honglin
    Qu, Peiqing
    Sun, Juan
    Lin, Wenpeng
    Li, Su
    2009 JOINT URBAN REMOTE SENSING EVENT, VOLS 1-3, 2009, : 162 - +