Key phase diagram experiment of the ZnO-SnO2 system and thermodynamic modeling of the ZnO-SnO2-TiO2 system

被引:0
作者
Lee, Jaesung [1 ]
Kang, Yoongu [1 ,2 ]
Jung, In-Ho [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Mat Sci & Engn, 1 Gwanak Ro, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Adv Mat RIAM, 1 Gwanak Ro, Seoul 08826, South Korea
关键词
ZnO-SnO2; ZnO-TiO2; SnO2-TiO2; ZnO-SnO2-TiO2; Phase Diagram; Thermodynamics; CALPHAD; QUASI-CHEMICAL MODEL; O SYSTEM; OPTIMIZATION; EQUILIBRIA; CHEMISTRY; TITANATES; DIFFRACTION; ALUMINUM; ZINC;
D O I
10.1007/s00269-024-01308-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The phase diagram of the ZnO-SnO2 system at 800-1600 degrees C was experimentally investigated using the classical equilibration/quenching method and differential thermal analysis (DTA) followed by X-ray diffraction (XRD) phase analysis and electron probe micro-analysis (EPMA). Sealed platinum capsules were employed to prevent the evaporation of ZnO and SnO2 in the experiments. Based on new experimental phase diagram data and all available data in literatures, the binary ZnO-SnO2, SnO2-TiO2, and ZrO2-TiO2 and the ternary ZnO-SnO2-TiO2 system was thermodynamically optimized using the CALculation of PHAse Diagram (CALPHAD) method to prepare a set of Gibbs energies of all phases within the binary systems which can be utilized to predict unknown phase equilibria and thermodynamic properties in the system.
引用
收藏
页数:19
相关论文
共 74 条
[1]   Photoelectrochemical Study of the Band Structure of Zn2SnO4 Prepared by the Hydrothermal Method [J].
Alpuche-Aviles, Mario A. ;
Wu, Yiying .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (09) :3216-3224
[2]   Ceramic varistors based on ZnO-SnO2 [J].
Anastasiou, A ;
Lee, MHJ ;
Leach, C ;
Freer, R .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2004, 24 (06) :1171-1175
[3]   FactSage thermochemical software and databases, 2010-2016 [J].
Bale, C. W. ;
Belisle, E. ;
Chartrand, P. ;
Decterov, S. A. ;
Eriksson, G. ;
Gheribi, A. E. ;
Hack, K. ;
Jung, I. -H. ;
Kang, Y. -B. ;
Melancon, J. ;
Pelton, A. D. ;
Petersen, S. ;
Robelin, C. ;
Sangster, J. ;
Spencer, P. ;
Van Ende, M-A. .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2016, 54 :35-53
[4]  
Barin I., 1989, Thermochemical Data of Pure Substances
[5]   COMPOUND FORMATION AND CRYSTAL STRUCTURE IN THE SYSTEM ZNO-TIO2 [J].
BARTRAM, SF ;
SLEPETYS, RA .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1961, 44 (10) :493-499
[6]   NEUTRON DIFFRACTION STUDY OF ORDERED ARRAYS IN MANGANESE ORTHOTITANATE . CRYSTALLINE AND MAGNETIC STRUCTURE [J].
BERTAUT, EF ;
VINCENT, H .
SOLID STATE COMMUNICATIONS, 1968, 6 (05) :269-&
[7]   Synthesis of ZnSnO3 nanostructures by using novel gelling agents and their application in degradation of textile dye [J].
Beshkar, Farshad ;
Amiri, Omid ;
Salehi, Zahra .
SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 184 :66-71
[8]   HIGH TEMPERATURE HEAT CONTENTS OF SOME TITANATES OF ALUMINUM, IRON AND ZINC [J].
BONNICKSON, KR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1955, 77 (08) :2152-2154
[9]   Zn2SnO4 and Zn2TiO4 inverse spinels: influence of the temperature on structural, microstructural and luminescent properties [J].
Chantelle, Lais ;
de Lima, Cleibson O. ;
Dantas, Marta C. ;
Siu-Li, Maximo ;
Menezes, Romualdo R. ;
de Souza, Fabio Santos ;
de Oliveira, Andre L. Menezes ;
dos Santos, Ieda M. Garcia .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, 149 (10) :4453-4468
[10]   Determination of the equilibrium temperatures and enthalpies of the solid-solid transitions of rubidium nitrate by differential scanning calorimetry [J].
Charsley, E. L. ;
Laye, P. G. ;
Markham, H. M. ;
Hill, J. O. ;
Berger, B. ;
Griffiths, T. T. .
THERMOCHIMICA ACTA, 2008, 469 (1-2) :65-70