How does Independent Component Analysis Preprocessing Affect EEG Microstates?

被引:0
作者
Artoni, Fiorenzo [1 ,2 ]
Michel, Christoph M. [3 ,4 ]
机构
[1] Univ Geneva, Fac Med, Dept Clin Neurosci, Geneva, Switzerland
[2] Politecn Milan, Dept Elect Informat & Bioengn, Milan, Italy
[3] Univ Geneva, Fac Med, Dept Basic Neurosci, Campus Biotech, Geneva, Switzerland
[4] CIBM Ctr Biomed Imaging, Geneva, Switzerland
关键词
EEG; Microstates; Preprocessing; Independent component analysis; Artifact removal; BRAIN; ARTIFACTS; NUMBER; CLUSTERS;
D O I
10.1007/s10548-024-01098-4
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Over recent years, electroencephalographic (EEG) microstates have been increasingly used to investigate, at a millisecond scale, the temporal dynamics of large-scale brain networks. By studying their topography and chronological sequence, microstates research has contributed to the understanding of the brain's functional organization at rest and its alteration in neurological or mental disorders. Artifact removal strategies, which differ from study to study, may alter microstates topographies and features, possibly reducing the generalizability and comparability of results across research groups. The aim of this work was therefore to test the reliability of the microstate extraction process and the stability of microstate features against different strategies of EEG data preprocessing with Independent Component Analysis (ICA) to remove artifacts embedded in the data. A normative resting state EEG dataset was used where subjects alternate eyes-open (EO) and eyes-closed (EC) periods. Four strategies were tested: (i) avoiding ICA preprocessing altogether, (ii) removing ocular artifacts only, (iii) removing all reliably identified physiological/non physiological artifacts, (iv) retaining only reliably identified brain ICs. Results show that skipping the removal of ocular artifacts affects the stability of microstate evaluation criteria, microstate topographies and greatly reduces the statistical power of EO/EC microstate features comparisons, however differences are not as prominent with more aggressive preprocessing. Provided a good-quality dataset is recorded, and ocular artifacts are removed, microstates topographies and features can capture brain-related physiological data and are robust to artifacts, independently of the level of preprocessing, paving the way to automatized microstate extraction pipelines.
引用
收藏
页数:11
相关论文
共 40 条
[1]   Microsynt: Exploring the syntax of EEG microstates [J].
Artoni, Fiorenzo ;
Maillard, Julien ;
Britz, Juliane ;
Brunet, Denis ;
Lysakowski, Christopher ;
Tramer, Martin R. ;
Michel, Christoph M. .
NEUROIMAGE, 2023, 277
[2]   EEG microstate dynamics indicate a U-shaped path to propofol-induced loss of consciousness [J].
Artoni, Fiorenzo ;
Maillard, Julien ;
Britz, Juliane ;
Seeber, Martin ;
Lysakowski, Christopher ;
Brechet, Lucie ;
Tramer, Martin R. ;
Michel, Christoph M. .
NEUROIMAGE, 2022, 256
[3]   Applying dimension reduction to EEG data by Principal Component Analysis reduces the quality of its subsequent Independent Component decomposition [J].
Artoni, Fiorenzo ;
Delorme, Arnaud ;
Makeig, Scott .
NEUROIMAGE, 2018, 175 :176-187
[4]   Unidirectional brain to muscle connectivity reveals motor cortex control of leg muscles during stereotyped walking [J].
Artoni, Fiorenzo ;
Fanciullacci, Chiara ;
Bertolucci, Federica ;
Panarese, Alessandro ;
Makeig, Scott ;
Micera, Silvestro ;
Chisari, Carmelo .
NEUROIMAGE, 2017, 159 :403-416
[5]   RELICA: A method for estimating the reliability of independent components [J].
Artoni, Fiorenzo ;
Menicucci, Danilo ;
Delorme, Arnaud ;
Makeig, Scott ;
Micera, Silvestro .
NEUROIMAGE, 2014, 103 :391-400
[6]   A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults [J].
Babayan, Anahit ;
Erbey, Miray ;
Kumral, Deniz ;
Reinelt, Janis D. ;
Reiter, Andrea M. F. ;
Roebbig, Josefin ;
Schaare, H. Lina ;
Uhlig, Marie ;
Anwander, Alfred ;
Bazin, Pierre-Louis ;
Horstmann, Annette ;
Lampe, Leonie ;
Nikulin, Vadim V. ;
Okon-Singer, Hadas ;
Preusser, Sven ;
Pampel, Andre ;
Rohr, Christiane S. ;
Sacher, Julia ;
Thoene-Otto, Angelika ;
Trapp, Sabrina ;
Nierhaus, Till ;
Altmann, Denise ;
Arelin, Katrin ;
Bloechl, Maria ;
Bongartz, Edith ;
Breig, Patric ;
Cesnaite, Elena ;
Chen, Sufang ;
Cozatl, Roberto ;
Czerwonatis, Saskia ;
Dambrauskaite, Gabriele ;
Dreyer, Maria ;
Enders, Jessica ;
Engelhardt, Melina ;
Fischer, Marie Michele ;
Forschack, Norman ;
Golchert, Johannes ;
Golz, Laura ;
Guran, C. Alexandrina ;
Hedrich, Susanna ;
Hentschel, Nicole ;
Hoffmann, Daria I. ;
Huntenburg, Julia M. ;
Jost, Rebecca ;
Kosatschek, Anna ;
Kunzendorf, Stella ;
Lammers, Hannah ;
Lauckner, Mark E. ;
Mahjoory, Keyvan ;
Kanaan, Ahmad S. .
SCIENTIFIC DATA, 2019, 6 (1)
[7]   Capturing the spatiotemporal dynamics of self-generated, task-initiated thoughts with EEG and fMRI [J].
Brechet, Lucie ;
Brunet, Denis ;
Birot, Gwenael ;
Gruetter, Rolf ;
Michel, Christoph M. ;
Jorge, Joao .
NEUROIMAGE, 2019, 194 :82-92
[8]   Spatiotemporal Analysis of Multichannel EEG: CARTOOL [J].
Brunet, Denis ;
Murray, Micah M. ;
Michel, Christoph M. .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2011, 2011
[9]  
Charrad M, 2014, J STAT SOFTW, V61, P1
[10]   Removal of ocular artifact from the EEG: a review [J].
Croft, RJ ;
Barry, RJ .
NEUROPHYSIOLOGIE CLINIQUE-CLINICAL NEUROPHYSIOLOGY, 2000, 30 (01) :5-19