Interface engineering enabling thin lithium metal electrodes down to 0.78 μm for garnet-type solid-state batteries

被引:6
作者
Ji, Weijie [1 ]
Luo, Bi [1 ]
Wang, Qi [1 ]
Yu, Guihui [1 ]
Zhang, Zixun [1 ]
Tian, Yi [1 ]
Zhao, Zaowen [2 ]
Zhao, Ruirui [3 ]
Wang, Shubin [4 ]
Wang, Xiaowei [1 ]
Zhang, Bao [1 ]
Zhang, Jiafeng [1 ]
Sang, Zhiyuan [5 ]
Liang, Ji [6 ]
机构
[1] Cent South Univ, Sch Met & Environm, Natl Engn Lab High Efficiency Recovery Refractory, Changsha, Peoples R China
[2] Hainan Univ, Sch Mat Sci & Engn, Special Glass Key Lab Hainan Prov, Haikou, Peoples R China
[3] South China Normal Univ, Engn Res Ctr MTEES, Sch Chem, Minist Educ, Guangzhou, Guangdong, Peoples R China
[4] Minist Ecol & Environm MEE, South China Inst Environm Sci, State Environm Protect Key Lab Urban Ecol Environm, Guangzhou, Peoples R China
[5] Peking Univ, Sch Mat Sci & Engn, Beijing, Peoples R China
[6] Tianjin Univ, Sch Mat Sci & Engn, Key Lab Adv Ceram & Machining Technol, Minist Educ, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-ENERGY-DENSITY; LI7LA3ZR2O12; CONDUCTIVITY; RESISTANCE; CAPACITY;
D O I
10.1038/s41467-024-54234-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Controllable engineering of thin lithium (Li) metal is essential for increasing the energy density of solid-state batteries and clarifying the interfacial evolution mechanisms of a lithium metal negative electrode. However, fabricating a thin lithium electrode faces significant challenges due to the fragility and high viscosity of Li metal. Herein, through facile treatment of Ta-doped Li7La3Zr2O12 (LLZTO) with trifluoromethanesulfonic acid, its surface Li2CO3 species is converted into a lithiophilic layer with LiCF3SO3 and LiF components. It enables the thickness control of Li metal negative electrodes, ranging from 0.78 mu m to 30 mu m. Quasi-solid-state lithium-metal battery with an optimized 7.54 mu m-thick lithium metal negative electrode, a commercial LiNi0.83Co0.11Mn0.06O2 positive electrode, and a negative/positive electrode capacity ratio of 1.1 shows a 500 cycles lifespan with a final discharge specific capacity of 99 mAh g-1 at 2.35 mA cm-2 and 25 degrees C. Through multi-scale characterizations of the thin lithium negative electrode, we clarify the multi-dimensional compositional evolution and failure mechanisms of lithium-deficient and -rich regions (0.78 mu m and 7.54 mu m), on its surface, inside it, or at the Li/LLZTO interface. Fabricating thin lithium electrodes is challenging due to lithium's fragility and viscosity. Here, authors convert surface Li2CO3 on Ta-doped Li7La3Zr2O12 to a lithiophilic layer via trifluoromethanesulfonic acid treatment, enabling precise control over lithium metal negative electrode thickness.
引用
收藏
页数:14
相关论文
共 84 条
  • [1] Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
    Bachman, John Christopher
    Muy, Sokseiha
    Grimaud, Alexis
    Chang, Hao-Hsun
    Pour, Nir
    Lux, Simon F.
    Paschos, Odysseas
    Maglia, Filippo
    Lupart, Saskia
    Lamp, Peter
    Giordano, Livia
    Shao-Horn, Yang
    [J]. CHEMICAL REVIEWS, 2016, 116 (01) : 140 - 162
  • [2] Interface engineering on cathode side for solid garnet batteries
    Bi, Zhijie
    Zhao, Ning
    Ma, Lina
    Fu, Zhengqian
    Xu, Fangfang
    Wang, Chunsheng
    Guo, Xiangxin
    [J]. CHEMICAL ENGINEERING JOURNAL, 2020, 387
  • [3] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [4] In-situ constructed lithium-salt lithiophilic layer inducing bi-functional interphase for stable LLZO/Li interface
    Cai, Mingli
    Jin, Jun
    Xiu, Tongping
    Song, Zhen
    Badding, Michael E.
    Wen, Zhaoyin
    [J]. ENERGY STORAGE MATERIALS, 2022, 47 : 61 - 69
  • [5] Solvation Structure Design for Aqueous Zn Metal Batteries
    Cao, Longsheng
    Li, Dan
    Hu, Enyuan
    Xu, Jijian
    Deng, Tao
    Ma, Lin
    Wang, Yi
    Yang, Xiao-Qing
    Wang, Chunsheng
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (51) : 21404 - 21409
  • [6] Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries
    Chen, Hao
    Yang, Yufei
    Boyle, David T.
    Jeong, You Kyeong
    Xu, Rong
    de Vasconcelos, Luize Scalco
    Huang, Zhuojun
    Wang, Hansen
    Wang, Hongxia
    Huang, Wenxiao
    Li, Huiqiao
    Wang, Jiangyan
    Gu, Hanke
    Matsumoto, Ryuhei
    Motohashi, Kazunari
    Nakayama, Yuri
    Zhao, Kejie
    Cui, Yi
    [J]. NATURE ENERGY, 2021, 6 (08) : 790 - 798
  • [7] Tight bonding and high-efficiency utilization of S-S moieties to enable ultra-stable and high-capacity alkali-metal conversion batteries
    Chen, Keyi
    Qiu, Wujie
    Wu, Qingping
    Zhou, Xuejun
    Liu, Jianjun
    Li, Chilin
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (10) : 6160 - 6171
  • [8] Excellent Li/Garnet Interface Wettability Achieved by Porous Hard Carbon Layer for Solid State Li Metal Battery
    Chen, Linhui
    Zhang, Jian
    Tong, Rong-Ao
    Zhang, Jingxi
    Wang, Hailong
    Shao, Gang
    Wang, Chang-An
    [J]. SMALL, 2022, 18 (08)
  • [9] Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces
    Chen, Rusong
    Li, Qinghao
    Yu, Xiqian
    Chen, Liquan
    Li, Hong
    [J]. CHEMICAL REVIEWS, 2020, 120 (14) : 6820 - 6877
  • [10] All-Solid-State Batteries with a Limited Lithium Metal Anode at Room Temperature using a Garnet-Based Electrolyte
    Chen, Shaojie
    Zhang, Jingxuan
    Nie, Lu
    Hu, Xiangchen
    Huang, Yuanqi
    Yu, Yi
    Liu, Wei
    [J]. ADVANCED MATERIALS, 2021, 33 (01)