SL2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {SL}}_2$$\end{document}-factorizations for groups of Lie type

被引:0
作者
Andrei Smolensky [1 ]
机构
[1] Neapolis University Pafos,Department of Computer Science
关键词
-factorization; Chevalley groups; Subsystem subgroups; 20G35; 20G41; 20H20; 20D06; 15A23;
D O I
10.1007/s40879-024-00785-7
中图分类号
学科分类号
摘要
It is shown that the Chevalley group of type Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} over a Hermitian domain can be presented as a product of |Φ|-rkΦ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\Phi |-{{\,\textrm{rk}\,}}\Phi $$\end{document} subgroups of type A1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{A}_1$$\end{document}. The known SL2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {SL}}_2$$\end{document}-factorizations for twisted groups and large Ree groups are made shorter, explicit and extended from finite fields to a wider class.
引用
收藏
相关论文
empty
未找到相关数据