Robust Teleportation of a Surface Code and Cascade of Topological Quantum Phase Transitions

被引:3
|
作者
Eckstein, Finn [1 ]
Han, Bo [2 ]
Trebst, Simon [1 ]
Zhu, Guo-Yi [1 ,3 ]
机构
[1] Univ Cologne, Inst Theoret Phys, Zulpicher Str 77, D-50937 Cologne, Germany
[2] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-7610001 Rehovot, Israel
[3] Hong Kong Univ Sci & Technol Guangzhou, Guangzhou 511400, Guangdong, Peoples R China
来源
PRX QUANTUM | 2024年 / 5卷 / 04期
关键词
MODELS; STATE; ORDER;
D O I
10.1103/PRXQuantum.5.040313
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Teleportation is a facet where quantum measurements can act as a powerful resource in quantum physics, as local measurements allow us to steer quantum information in a nonlocal way. While this has long been established for a single Bell pair, the teleportation of a many-qubit entangled state using nonmaximally entangled resources presents a fundamentally different challenge. Here, we investigate a tangible protocol for teleporting a long-range entangled surface-code state using elementary Bell measurements and its stability in the presence of coherent errors that weaken the Bell entanglement. We relate the underlying threshold problem to the physics of anyon condensation under weak measurements and map it to a variant of the Ashkin-Teller model of statistical mechanics with Nishimori-type disorder, which gives rise to a cascade of phase transitions. Tuning the angle of the local Bell measurements, we find a continuously varying threshold. Notably, the threshold moves to infinity for the X + Z angle along the self-dual line-indicating that infinitesimally weak entanglement is sufficient in teleporting a self-dual topological surface code. Our teleportation protocol, which can be readily implemented in dynamically configurable Rydberg-atom arrays, thereby gives guidance for a practical demonstration of the power of quantum measurements.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Quantum information approach to the description of quantum phase transitions
    Castanos, O.
    Lopez-Pena, R.
    Nahmad-Achar, E.
    Hirsch, J. G.
    HITES 2012: HORIZONS OF INNOVATIVE THEORIES, EXPERIMENTS, AND SUPERCOMPUTING IN NUCLEAR PHYSICS, 2012, 403
  • [22] Search for Electronic Phase Separation at Quantum Phase Transitions
    Pfleiderer, C.
    Boeni, P.
    Franz, C.
    Keller, T.
    Neubauer, A.
    Niklowitz, P. G.
    Schmakat, P.
    Schulz, M.
    Huang, Y. -K.
    Mydosh, J. A.
    Vojta, M.
    Duncan, W.
    Grosche, F. M.
    Brando, M.
    Deppe, M.
    Geibel, C.
    Steglich, F.
    Krimmel, A.
    Loidl, A.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2010, 161 (1-2) : 167 - 181
  • [23] Tensor Network Approach to Phase Transitions of a Non-Abelian Topological Phase
    Xu, Wen-Tao
    Zhang, Qi
    Zhang, Guang-Ming
    PHYSICAL REVIEW LETTERS, 2020, 124 (13)
  • [25] Unsupervised identification of topological phase transitions using predictive models
    Greplova, Eliska
    Valenti, Agnes
    Boschung, Gregor
    Schafer, Frank
    Lorch, Niels
    Huber, Sebastian D.
    NEW JOURNAL OF PHYSICS, 2020, 22 (04):
  • [26] Phase transitions driven by topological excitations and their tensor network approach
    Song, Feng-Feng
    Zhang, Guang-Ming
    ACTA PHYSICA SINICA, 2023, 72 (23)
  • [27] Signatures of topological phase transitions in higher Landau levels of HgTe/CdTe quantum wells from an information theory perspective
    Calixto, Manuel
    Cordero, Nicolas A.
    Romera, Elvira
    Castanos, Octavio
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 605
  • [28] Vulnerability of fault-tolerant topological quantum error correction to quantum deviations in code space
    Zhao, Yuanchen
    Liu, Dong E.
    PNAS NEXUS, 2025, 4 (03):
  • [29] Unveiling quantum phase transitions by fidelity mapping
    Tang, Ho-Kin
    Marashli, Mohamad Ali
    Yu, Wing Chi
    PHYSICAL REVIEW B, 2021, 104 (07)
  • [30] Quantum phase transitions in proximitized Josephson junctions
    Wu, Chien-Te
    Setiawan, F.
    Anderson, Brandon M.
    Hsiao, Wei-Han
    Levin, K.
    PHYSICAL REVIEW B, 2018, 98 (06)