Asymptotic Stability in the Critical Space of 2D Monotone Shear Flow in the Viscous Fluid

被引:3
作者
Li, Hui [1 ]
Zhao, Weiren [1 ]
机构
[1] New York Univ Abu Dhabi, Dept Math, POB 129188, Abu Dhabi, U Arab Emirates
关键词
ENHANCED DISSIPATION; EQUATIONS;
D O I
10.1007/s00220-024-05155-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study the long-time behavior of the solutions to the two-dimensional incompressible free Navier Stokes equation (without forcing) with small viscosity nu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}, when the initial data is close to stable monotone shear flows. We prove the asymptotic stability and obtain the sharp stability threshold nu 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu <^>{\frac{1}{2}}$$\end{document} for perturbations in the critical space HxlogLy2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{log}_xL<^>2_y$$\end{document}. Specifically, if the initial velocity Vin\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{in}$$\end{document} and the corresponding vorticity Win\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{in}$$\end{document} are nu 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu <^>{\frac{1}{2}}$$\end{document}-close to the shear flow (bin(y),0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(b_{in}(y),0)$$\end{document} in the critical space, i.e., & Vert;Vin-(bin(y),0)& Vert;Lx,y2+& Vert;Win-(-partial derivative ybin)& Vert;HxlogLy2 <=epsilon nu 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert V_{in}-(b_{in}(y),0)\Vert _{L_{x,y}<^>2}+\Vert W_{in}-(-\partial _yb_{in})\Vert _{H<^>{log}_xL<^>2_y}\le \varepsilon \nu <^>{\frac{1}{2}}$$\end{document}, then the velocity V(t) stay nu 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu <^>{\frac{1}{2}}$$\end{document}-close to a shear flow (b(t, y), 0) that solves the free heat equation (partial derivative t-nu partial derivative yy)b(t,y)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\partial _t-\nu \partial _{yy})b(t,y)=0$$\end{document}. We also prove the enhanced dissipation and inviscid damping, namely, the nonzero modes of vorticity and velocity decay in the following sense & Vert;W not equal & Vert;L2 less than or similar to epsilon nu 12e-c nu 13t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert W_{\ne }\Vert _{L<^>2}\lesssim \varepsilon \nu <^>{\frac{1}{2}}e<^>{-c\nu <^>{\frac{1}{3}}t}$$\end{document} and & Vert;V not equal & Vert;Lt2Lx,y2 less than or similar to epsilon nu 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert V_{\ne }\Vert _{L<^>2_tL<^>2_{x,y}}\lesssim \varepsilon \nu <^>{\frac{1}{2}}$$\end{document}. In the proof, we construct a time-dependent wave operator corresponding to the Rayleigh operator b(t,y)Id-partial derivative yyb(t,y)Delta-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b(t,y)\textrm{Id}-\partial _{yy}b(t,y)\Delta <^>{-1}$$\end{document}, which could be useful in future studies.
引用
收藏
页数:50
相关论文
共 40 条
[1]   The null condition for quasilinear wave equations in two space dimensions I [J].
Alinhac, S .
INVENTIONES MATHEMATICAE, 2001, 145 (03) :597-618
[2]  
Bedrossian J., 2022, Graduate Studies in Mathematics, V225
[3]   Dynamics Near the Subcritical Transition of the 3D Couette Flow II: Above Threshold Case [J].
Bedrossian, Jacob ;
Germain, Pierre ;
Masmoudi, Nader .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 279 (1377) :I-+
[4]   Inviscid Damping and Enhanced Dissipation of the Boundary Layer for 2D Navier-Stokes Linearized Around Couette Flow in a Channel [J].
Bedrossian, Jacob ;
He, Siming .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 379 (01) :177-226
[5]  
Bedrossian J, 2020, MEM AM MATH SOC, V266, P1, DOI 10.1090/memo/1294
[6]   The Sobolev Stability Threshold for 2D Shear Flows Near Couette [J].
Bedrossian, Jacob ;
Vicol, Vlad ;
Wang, Fei .
JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (06) :2051-2075
[7]   On the stability threshold for the 3D Couette flow in Sobolev regularity [J].
Bedrossian, Jacob ;
Germain, Pierre ;
Masmoudi, Nader .
ANNALS OF MATHEMATICS, 2017, 185 (02) :541-608
[8]   Enhanced Dissipation and Inviscid Damping in the Inviscid Limit of the Navier-Stokes Equations Near the Two Dimensional Couette Flow [J].
Bedrossian, Jacob ;
Masmoudi, Nader ;
Vicol, Vlad .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 219 (03) :1087-1159
[9]   INVISCID DAMPING AND THE ASYMPTOTIC STABILITY OF PLANAR SHEAR FLOWS IN THE 2D EULER EQUATIONS [J].
Bedrossian, Jacob ;
Masmoudi, Nader .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2015, (122) :195-300
[10]   STABILITY OF INVISCID PLANE COUETTE FLOW [J].
CASE, KM .
PHYSICS OF FLUIDS, 1960, 3 (02) :143-148