Dynamics of simultaneous propagation of two COVID-19 strains

被引:1
作者
Borah, Padma Bhushan [1 ,2 ]
Dehingia, Kaushik [3 ,4 ,5 ]
Sarmah, Hemanta Kr. [1 ]
Emadifar, Homan [6 ,7 ]
机构
[1] Gauhati Univ, Dept Math, Gauhati 781014, Assam, India
[2] Cotton Univ, Dept Math, Gauhati 781001, Assam, India
[3] Sonari Coll, Dept Math, Sonari 785690, Assam, India
[4] Near East Univ, Math Res Ctr, TRNC, Mersin10, TR-99318 Nicosia, Turkiye
[5] Khazar Univ, Res Ctr Math & Phys Sci, Baku 1009, Azerbaijan
[6] Saveetha Univ, Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Math, Chennai 602105, Tamil Nadu, India
[7] Islamic Azad Univ, Dept Math, Hamedan Branch, Hamadan, Iran
来源
ADVANCES IN CONTINUOUS AND DISCRETE MODELS | 2025年 / 2025卷 / 01期
关键词
COVID-19; Compartmental model; Basic reproduction number; Stability; Numerical simulations; TRANSMISSION DYNAMICS; MATHEMATICAL-ANALYSIS; REPRODUCTION NUMBER; SARS-COV-2; VARIANTS; EPIDEMIC; IMMUNITY; OUTBREAK; MODELS; WUHAN;
D O I
10.1186/s13662-025-03901-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we present a mathematical framework that captures the dynamic behavior of the simultaneous propagation of two strains of COVID-19. We apply the next-generation matrix method to compute the basic reproduction ratio R-0. We investigate the stability of the model at each of the feasible equilibria. To validate our theoretical results, we have conducted numerical simulations. It is observed that if R-0 <= 1, eventually there will be no disease. However, if R-0 > 1, a competition between the two COVID-19 strains will occur, and the more infectious variant will survive while the other disappears.
引用
收藏
页数:21
相关论文
共 63 条
[1]   Mathematical analysis of a COVID-19 model with different types of quarantine and isolation [J].
Al-Yahyai, Maryam ;
Al-Musalhi, Fatma ;
Elmojtaba, Ibrahim ;
Al-Salti, Nasser .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (01) :1344-1375
[2]   Immunity to SARS-CoV-2 variants of concern [J].
Altmann, Daniel M. ;
Boyton, Rosemary J. ;
Beale, Rupert .
SCIENCE, 2021, 371 (6534) :1103-1104
[3]   Data-based analysis, modelling and forecasting of the COVID-19 outbreak [J].
Anastassopoulou, Cleo ;
Russo, Lucia ;
Tsakris, Athanasios ;
Siettos, Constantinos .
PLOS ONE, 2020, 15 (03)
[4]  
Andersen K., 2020, J. Virol, V17, P1
[5]   Mathematical analysis of the effects of controls on transmission dynamics of SARS-CoV-2 [J].
Asamoah, Joshua Kiddy K. ;
Bornaa, C. S. ;
Seidu, Baba ;
Jin, Zhen .
ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (06) :5069-5078
[6]   Modeling COVID-19 dynamic using a two-strain model with vaccination [J].
Avila-Ponce de Leon, Ugo ;
Avila-Vales, Eric ;
Huang, Kuan-lin .
CHAOS SOLITONS & FRACTALS, 2022, 157
[7]   Decoding the double trouble: A mathematical modelling of co-infection dynamics of SARS-CoV-2 and influenza-like illness [J].
Bhowmick, Suman ;
Sokolov, Igor M. ;
Lentz, Hartmut H. K. .
BIOSYSTEMS, 2023, 224
[8]  
Bjrnstad ON., 2018, Epidemics: Models and Data Using R, DOI [10.1007/978-3-319-97487-3, DOI 10.1007/978-3-319-97487-3]
[9]   Model parameters and outbreak control for SARS [J].
Chowell, G ;
Castillo-Chavez, C ;
Fenimore, PW ;
Kribs-Zaleta, CM ;
Arriola, L ;
Hyman, JM .
EMERGING INFECTIOUS DISEASES, 2004, 10 (07) :1258-1263
[10]   Winter of Omicron-The Evolving COVID-19 Pandemic [J].
del Rio, Carlos ;
Omer, Saad B. ;
Malani, Preeti N. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2022, 327 (04) :319-320