The topology of the space of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}\mathcal{K}$$\end{document} integrable functions in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^n}$$\end{document}

被引:0
作者
Varayu Boonpogkrong [1 ]
机构
[1] Prince of Songkla University,Department of Mathematics, Division of Computational Science, Faculty of Science
关键词
compact operator; integral equation; controlled convergence; Henstock-Kurzweil integral in ; 26A39; 26A42;
D O I
10.21136/CMJ.2023.0313-22
中图分类号
学科分类号
摘要
It is known that there is no natural Banach norm on the space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}\mathcal{K}$$\end{document} of n-dimensional Henstock-Kurzweil integrable functions on [a, b]. We show that the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}\mathcal{K}$$\end{document} space is the uncountable union of Fréchet spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}\mathcal{K}(X)$$\end{document}. On each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}\mathcal{K}(X)$$\end{document} space, an F-norm ‖·‖X is defined. A ‖·‖X-convergent sequence is equivalent to a control-convergent sequence. Furthermore, an F-norm is also defined for a ‖·‖X continuous linear operator. Hence, many important results in functional analysis hold for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}\mathcal{K}(X)$$\end{document} space. It is well-known that every control-convergent sequence in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}\mathcal{K}$$\end{document} space always belongs to a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}\mathcal{K}(X)$$\end{document} space. Hence, results in functional analysis can be applied to the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}\mathcal{K}$$\end{document} space. Compact linear operators and the existence of solutions to integral equations are also given. The results for the one-dimensional case have been discussed in V. Boonpogkrong (2022). Proofs of many results for the n-dimensional and the one-dimensional cases are similar.
引用
收藏
页码:85 / 102
页数:17
相关论文
empty
未找到相关数据