Toric polar maps and characteristic classes

被引:1
作者
Fassarella, Thiago [1 ]
Medeiros, Nivaldo [1 ]
Salomao, Rodrigo [1 ]
机构
[1] Univ Fed Fluminense, Inst Matemat & Estat, Rua Alexandre Moura 8, BR-24210200 Niteroi, RJ, Brazil
关键词
Characteristic classes; Birational maps; Hypersurfaces; Logarithmic gauss maps; LINEAR PRECISION; CRITICAL-POINTS; CHERN CLASSES; HYPERSURFACES; PRODUCT; POWERS;
D O I
10.1007/s40879-024-00783-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a hypersurface in a complex projective space, we prove that the multidegrees of its toric polar map agree, up to sign, with the coefficients of the Chern-Schwartz-MacPherson class of a distinguished open set, namely the complement of the union of the hypersurface and the coordinate hyperplanes. In particular, the degree of the toric polar map is given by the signed topological Euler characteristic of the distinguished open set. For plane curves, a precise formula for the degree of the toric polar map is obtained in terms of local invariants. Finally, we construct families, in arbitrary dimension, of irreducible hypersurfaces whose toric polar map is birational.
引用
收藏
页数:25
相关论文
共 40 条
[1]  
Aluffi P, 2005, TRENDS MATH, P1, DOI 10.1007/3-7643-7342-3_1
[3]   Differential forms with logarithmic poles and Chern-Schwartz-MacPherson classes of singular varieties [J].
Aluffi, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (07) :619-624
[4]   The Euclidean distance degree of smooth complex projective varieties [J].
Aluffi, Paolo ;
Harris, Corey .
ALGEBRA & NUMBER THEORY, 2018, 12 (08) :2005-2032
[5]   Euler characteristics of general linear sections and polynomial Chern classes [J].
Aluffi P. .
Rendiconti del Circolo Matematico di Palermo, 2013, 62 (1) :3-26
[6]  
[Anonymous], 1994, Int. Math. Res. Not.
[7]  
Brasselet J.-P., 1981, ASTERISQUE, V82-83, P93
[8]  
Brasselet J.-P., 2021, C BRAS MAT I NAC MAT
[9]  
Brasselet J-P., 2022, Handbook of Geometry and Topology of Singularities, VIII, P303
[10]   Homaloidal hypersurfaces and hypersurfaces with vanishing Hessian [J].
Ciliberto, Ciro ;
Russo, Francesco ;
Simis, Aron .
ADVANCES IN MATHEMATICS, 2008, 218 (06) :1759-1805