Risk factors for metabolic syndrome in the premetabolic state assessed using hierarchical clustering study in a health screening group

被引:1
作者
Park, Se-Jun [1 ]
Kim, Yu Na [1 ]
Oh, Byeong Kil [2 ]
Kang, Jeonggyu [2 ,3 ]
机构
[1] Sungkyunkwan Univ, Kangbuk Samsung Hosp, Total Healthcare Ctr, Sch Med, Seoul, South Korea
[2] Sungkyunkwan Univ, Sch Med, Kangbuk Samsung Hosp, Total Healthcare Ctr, Seoul, South Korea
[3] Sungkyunkwan Univ, Dept Clin Res Design & Evaluat, SAIHST, Seoul 06355, South Korea
关键词
Premetabolic state; Metabolic syndrome; Machine learning; Precision medicine; DOSE-RESPONSE METAANALYSIS; FATTY LIVER; HEART-RATE; DISEASE; TIME; IDENTIFICATION; INFLAMMATION; ASSOCIATION; OBESITY;
D O I
10.1038/s41598-024-82513-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Early detection of a premetabolic status that is at risk for metabolic syndrome (MetS) but not meeting the criteria is crucial. This study examined 27,623 participants aged 20-50 (mean: 40.7) years who underwent initial health screening at Kangbuk Samsung Hospital (2011-2019), focusing on individuals with one or two MetS components. Hierarchical agglomerative clustering was used to form MetS risk clusters based on initial and follow-up data, including age, resting heart rate (rHR), serum uric acid (UA), C-reactive protein (CRP), gamma-glutamyl transpeptidase, and ferritin levels, and nonalcoholic fatty liver disease (NAFLD), periodontal disease, and Helicobacter pylori infection duration. Kaplan-Meier and generalized additive models were used to present the restricted mean survival time (RMST) and identify onset contributors. Clusters with NAFLD and elevated UA levels had the highest MetS risk, whereas those with uniformly low biomarker levels revealed the lowest risk. During follow-up, a cluster initially comprising 60.2% moderate-risk patients exhibited high biomarker levels and had the worst MetS prognosis (RMST: 211 days). UA, CRP levels, and rHR contributed to the incidence of MetS in the fitted model. Machine learning can predict the premetabolic state at MetS risk in a population-based cohort.
引用
收藏
页数:8
相关论文
共 48 条
[1]  
Bakkouri I., 2020, IMAGE SIGNAL PROCESS, P170, DOI [10.1007/978-3-030-51935-318, DOI 10.1007/978-3-030-51935-318]
[2]   2MGAS-Net: multi-level multi-scale gated attentional squeezed network for polyp segmentation [J].
Bakkouri, Ibtissam ;
Bakkouri, Siham .
SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (6-7) :5377-5386
[3]   Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis [J].
Ballestri, Stefano ;
Zona, Stefano ;
Targher, Giovanni ;
Romagnoli, Dante ;
Baldelli, Enrica ;
Nascimbeni, Fabio ;
Roverato, Alberto ;
Guaraldi, Giovanni ;
Lonardo, Amedeo .
JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2016, 31 (05) :936-944
[4]   Clinical characterization of data-driven diabetes subgroups in Mexicans using a reproducible machine learning approach [J].
Bello-Chavolla, Omar Yaxmehen ;
Bahena-Lopez, Jessica Paola ;
Vargas-Vazquez, Arsenio ;
Antonio-Villa, Neftali Eduardo ;
Marquez-Salinas, Alejandro ;
Fermin-Martinez, Carlos A. ;
Rojas, Rosalba ;
Mehta, Roopa ;
Cruz-Bautista, Ivette ;
Hernandez-Jimenez, Sergio ;
Garcia-Ulloa, Ana Cristina ;
Almeda-Valdes, Paloma ;
Aguilar-Salinas, Carlos Alberto .
BMJ OPEN DIABETES RESEARCH & CARE, 2020, 8 (01)
[5]   Metabolically Healthy Obesity and Development of Chronic Kidney Disease A Cohort Study [J].
Chang, Yoosoo ;
Ryu, Seungho ;
Choi, Yuni ;
Zhang, Yiyi ;
Cho, Juhee ;
Kwon, Min-Jung ;
Hyun, Young Youl ;
Lee, Kyu-Beck ;
Kim, Hyang ;
Jung, Hyun-Suk ;
Yun, Kyung Eun ;
Ahn, Jiin ;
Rampal, Sanjay ;
Zhao, Di ;
Suh, Byung-Seong ;
Chung, Eun Cheol ;
Shin, Hocheol ;
Pastor-Barriuso, Roberto ;
Guallar, Eliseo .
ANNALS OF INTERNAL MEDICINE, 2016, 164 (05) :305-+
[6]   Early warning signals of recovery in complex systems [J].
Clements, Christopher F. ;
McCarthy, Michael A. ;
Blanchard, Julia L. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[7]   A New Initiative on Precision Medicine [J].
Collins, Francis S. ;
Varmus, Harold .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (09) :793-795
[8]   Association between metabolic syndrome and periodontitis: a systematic review and meta-analysis [J].
Daudt, Luciana Dondonis ;
Musskopf, Marta Liliana ;
Mendez, Marina ;
Reck Remonti, Luciana Loss ;
Leitao, Cristiane Bauermann ;
Gross, Jorge Luiz ;
Weidlich, Patricia ;
Oppermann, Rui Vicente .
BRAZILIAN ORAL RESEARCH, 2018, 32
[9]   Metabolic syndrome and 10-year cardiovascular disease risk in the hoorn study [J].
Dekker, JM ;
Girman, C ;
Rhodes, T ;
Nijpels, G ;
Stehouwer, CDA ;
Bouter, LM ;
Heine, RJ .
CIRCULATION, 2005, 112 (05) :666-673
[10]   Cancer systems biology: embracing complexity to develop better anticancer therapeutic strategies [J].
Du, W. ;
Elemento, O. .
ONCOGENE, 2015, 34 (25) :3215-3225