A new preconditioned Gauss-Seidel method for solving M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}$$\end{document}-tensor multi-linear system

被引:0
作者
Xuan-Le An [1 ]
Xin-Mei Lv [1 ]
Shu-Xin Miao [1 ]
机构
[1] Northwest Normal University,College of Mathematics and Statistics
关键词
Multi-linear system; -tensor; Preconditioner; Preconditioned Gauss–Seidel method; 15A69; 65F10;
D O I
10.1007/s13160-024-00670-6
中图分类号
学科分类号
摘要
By utilizing some elements of each row of the majorization matrix associated with the coefficient tensor, we propose a preconditioner, and present the corresponding preconditioned Gauss–Seidel method for solving M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}$$\end{document}-tensor multi-linear system. Theoretically, we give the convergence and comparison theorems of the proposed preconditioned Gauss–Seidel method. Numerically, we show the correctness of theoretical results and the efficiency of the proposed preconditioner by some examples.
引用
收藏
页码:245 / 258
页数:13
相关论文
empty
未找到相关数据