Non-integral boundary slopes of alternating knots

被引:0
作者
Ishikawa, Masaharu [1 ]
Mattman, Thomas W. [2 ]
Shimokawa, Koya [3 ]
机构
[1] Keio Univ, Dept Math, Hiyoshi Campus,4-1-1 Hiyoshi,Kohoku Ku, Yokohama, Kanagawa 2238521, Japan
[2] Calif State Univ, Dept Math & Stat, Chico, CA 95929 USA
[3] Ochanomizu Univ, Dept Math, 2-1-1 Otsuka,Bunkyo Ku, Tokyo 1128610, Japan
基金
日本学术振兴会;
关键词
Boundary slopes; Alternating knots; Deformation variety; Layered solid torus;
D O I
10.1007/s10711-025-00980-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show, for every positive integer n, there is an alternating knot having a boundary slope with denominator n. We make use of Kabaya's method for boundary slopes and the layered solid torus construction introduced by Jaco and Rubinstein and further developed by Howie et al.
引用
收藏
页数:21
相关论文
共 13 条
  • [1] Burton B., 1999, Regina: Software for low-dimensional topology
  • [2] Culler M., 2022, SnapPy, a computer program for studying the geometry and topology of 3-manifolds
  • [3] INCOMPRESSIBILITY CRITERIA FOR SPUN-NORMAL SURFACES
    Dunfield, Nathan M.
    Garoufalidis, Stavros
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (11) : 6109 - 6137
  • [4] Finite surgeries on three-tangle pretzel knots
    Futer, David
    Ishikawa, Masaharu
    Kabaya, Yuichi
    Mattman, Thomas W.
    Shimokawa, Koya
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2009, 9 (02): : 743 - 771
  • [5] INCOMPRESSIBLE SURFACES IN 2-BRIDGE KNOT COMPLEMENTS
    HATCHER, A
    THURSTON, W
    [J]. INVENTIONES MATHEMATICAE, 1985, 79 (02) : 225 - 246
  • [6] BOUNDARY SLOPES FOR MONTESINOS KNOTS
    HATCHER, A
    OERTEL, U
    [J]. TOPOLOGY, 1989, 28 (04) : 453 - 480
  • [7] Howie J., 2023, J. Math., V34
  • [8] Howie JA, 2024, Arxiv, DOI arXiv:2002.10356
  • [9] Jaco W, 2006, Arxiv, DOI arXiv:math/0603601
  • [10] Kabaya Y., 2008, Private communication