ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-Approximability and Quantitative Fatou Theorem on Riemannian Manifoldsε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-Approximability and Quantitative Fatou TheoremM. Gryszówka

被引:0
作者
Marcin Gryszówka [1 ]
机构
[1] Polish Academy of Sciences,Institute of Mathematics
[2] University of Warsaw,Faculty of Mathematics, Informatics and Mechanics
关键词
-Approximability; Fatou theorems; Harmonic functions; Lipschitz domains; Primary 31B25; Secondary 58J60; 28A75;
D O I
10.1007/s12220-025-01964-y
中图分类号
学科分类号
摘要
We prove the Quantitative Fatou Theorem for Lipschitz domains on complete Riemannian manifolds. This requires extending the ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-approximation lemma to the manifold setting. Our studies apply to harmonic functions, as well as to a class of A-harmonic functions on manifolds. The presented results extend works by Dahlberg, Garnett, Bortz and Hofmann.
引用
收藏
相关论文
empty
未找到相关数据