On the Longest Run and the Waiting Time for the First Run in a Continuous Time Multi-State Markov Chain

被引:1
作者
Vaggelatou, Eutichia [1 ]
机构
[1] Natl & Kapodistrian Univ Athens, Dept Math, Athens, Greece
关键词
Success runs; Marked point process; Continuous-time Markov chain; Markov chain embedding technique; Waiting time; Longest run; Exact distribution; Laplace transform; Approximating distribution; Exponential distribution; Erlang distribution; Extreme value distribution; Erdos-Renyi type law; Reliability model with shocks; Quality control charts; Independence test; CONTROL CHARTS; SEQUENCE; SOONER; LENGTH;
D O I
10.1007/s11009-024-10127-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, a marked point process with r+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r+1$$\end{document} types of marks (r types of successes S1,S2,& mldr;,Sr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{1},S_{2},\ldots ,S_{r}$$\end{document} and a failure F), r >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\ge 1$$\end{document}, that appear in continuous time according to a continuous-time Markov chain is considered. By constructing an appropriate embedded process using Markov chain embedding technique in continuous time, the exact distribution and its Laplace transform for the waiting time T until the first appearance of an Si\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{i}$$\end{document}-run of length ki\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{i}$$\end{document}, for i=1,2,& mldr;,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,2,\ldots ,r$$\end{document} (whichever comes first), are provided. The exact distribution of the length Lt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{t}$$\end{document} of the longest run of successes in the time interval [0, t] is also derived. Further, the asymptotic distributions of T and Lt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{t}$$\end{document} are obtained under general assumptions. Finally, numerical examples and applications in reliability theory, quality control and hypothesis testing are presented.
引用
收藏
页数:26
相关论文
共 24 条
[1]   WAITING TIME PROBLEMS FOR A SEQUENCE OF DISCRETE RANDOM-VARIABLES [J].
AKI, S .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1992, 44 (02) :363-378
[2]   On the waiting time for the first success run [J].
Aki, Sigeo ;
Hirano, Katuomi .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2007, 59 (03) :597-602
[3]   On waiting time problems associated with runs in Markov dependent trials [J].
Antzoulakos, DL .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1999, 51 (02) :323-330
[4]  
Balakrishnan N., 2002, Runs and Scans With Applications
[5]   SOONER AND LATER WAITING TIME PROBLEMS FOR MARKOVIAN BERNOULLI TRIALS [J].
BALASUBRAMANIAN, K ;
VIVEROS, R ;
BALAKRISHNAN, N .
STATISTICS & PROBABILITY LETTERS, 1993, 18 (02) :153-161
[6]   Waiting Time for an Almost Perfect Run and Applications in Statistical Process Control [J].
Bersimis, Sotiris ;
Koutras, Markos V. ;
Papadopoulos, George K. .
METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2014, 16 (01) :207-222
[7]  
Chadjiconstantinidis S, 2023, STAT PAP, V64, P1373, DOI 10.1007/s00362-022-01351-7
[8]   Weak runs in sequences of binary trials [J].
Dafnis, Spiros D. ;
Makri, Frosso S. .
METRIKA, 2022, 85 (05) :573-603
[9]   SOONER AND LATER WAITING TIME PROBLEMS FOR BERNOULLI TRIALS - FREQUENCY AND RUN QUOTAS [J].
EBNESHAHRASHOOB, M ;
SOBEL, M .
STATISTICS & PROBABILITY LETTERS, 1990, 9 (01) :5-11
[10]   Some results associated with the longest run statistic in a sequence of Markov dependent trials [J].
Eryilmaz, Serkan .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (01) :119-130