Transcriptomic predictors of rapid progression from mild cognitive impairment to Alzheimer's disease

被引:0
作者
Huang, Yi-Long [1 ]
Tsai, Tsung-Hsien [2 ]
Shen, Zhao-Qing [3 ,4 ]
Chan, Yun-Hsuan [2 ]
Tu, Chih-Wei [2 ]
Tung, Chien-Yi [5 ]
Wang, Pei-Ning [6 ,7 ,9 ]
Tsai, Ting-Fen [1 ,3 ,4 ,8 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Ctr Hlth Longev & Aging Sci, 115,Sect 2,Li Nong St, Taipei 112304, Taiwan
[2] Acer Inc, Adv Tech BU, 8F 88 Sect 1,intai 5th Rd, New Taipei City 221421, Taiwan
[3] Natl Yang Ming Chiao Tung Univ, Dept Life Sci, 155 Sect 2,Linong St, Taipei 112304, Taiwan
[4] Natl Yang Ming Chiao Tung Univ, Inst Genome Sci, 155 Sect 2,Linong St, Taipei 112304, Taiwan
[5] Natl Yang Ming Chiao Tung Univ, Natl Genom Ctr Clin & Biotechnol Applicat, Canc & Immunol Res Ctr, 155 Sect 2,Linong St, Taipei 112304, Taiwan
[6] Taipei Vet Gen Hosp, Dept Neurol Inst, Div Gen Neurol, 201 Sect 2,Shipai Rd, Taipei 112201, Taiwan
[7] Natl Yang Ming Chiao Tung Univ, Sch Med, Dept Urol, 155 Sect 2,Linong St, Taipei 112304, Taiwan
[8] Natl Hlth Res Inst, Inst Mol & Genom Med, 35 Keyan Rd, Zhunan 350401, Miaoli, Taiwan
[9] Taipei Vet Gen Hosp, Dept Neurol Inst, Div Gen Neurol, 201 Sect 2,Shipai Rd, Taipei 112, Taiwan
关键词
Alzheimer's disease; Mild cognitive impairment; Transcriptomics; Blood-based biomarker; Machine learning; DIAGNOSTIC GUIDELINES; NATIONAL INSTITUTE; DEMENTIA; RECOMMENDATIONS; ASSOCIATION;
D O I
10.1186/s13195-024-01651-0
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BackgroundEffective treatment for Alzheimer's disease (AD) remains an unmet need. Thus, identifying patients with mild cognitive impairment (MCI) who are at high-risk of progressing to AD is crucial for early intervention.MethodsBlood-based transcriptomics analyses were performed using a longitudinal study cohort to compare progressive MCI (P-MCI, n = 28), stable MCI (S-MCI, n = 39), and AD patients (n = 49). Statistical DESeq2 analysis and machine learning methods were employed to identify differentially expressed genes (DEGs) and develop prediction models.ResultsWe discovered a remarkable gender-specific difference in DEGs that distinguish P-MCI from S-MCI. Machine learning models achieved high accuracy in distinguishing P-MCI from S-MCI (AUC 0.93), AD from S-MCI (AUC 0.94), and AD from P-MCI (AUC 0.92). An 8-gene signature was identified for distinguishing P-MCI from S-MCI.ConclusionsBlood-based transcriptomic biomarker signatures show great utility in identifying high-risk MCI patients, with mitochondrial processes emerging as a crucial contributor to AD progression.
引用
收藏
页数:15
相关论文
共 37 条
[1]   Biomarkers in dementia: clinical utility and new directions [J].
Ahmed, R. M. ;
Paterson, R. W. ;
Warren, J. D. ;
Zetterberg, H. ;
O'Brien, J. T. ;
Fox, N. C. ;
Halliday, G. M. ;
Schott, J. M. .
JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2014, 85 (12) :1426-1434
[2]   The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease [J].
Albert, Marilyn S. ;
DeKosky, Steven T. ;
Dickson, Dennis ;
Dubois, Bruno ;
Feldman, Howard H. ;
Fox, Nick C. ;
Gamst, Anthony ;
Holtzman, David M. ;
Jagust, William J. ;
Petersen, Ronald C. ;
Snyder, Peter J. ;
Carrillo, Maria C. ;
Thies, Bill ;
Phelps, Creighton H. .
ALZHEIMERS & DEMENTIA, 2011, 7 (03) :270-279
[3]   Targeting Neuroinflammation to Treat Alzheimer's Disease [J].
Ardura-Fabregat, A. ;
Boddeke, E. W. G. M. ;
Boza-Serrano, A. ;
Brioschi, S. ;
Castro-Gomez, S. ;
Ceyzeriat, K. ;
Dansokho, C. ;
Dierkes, T. ;
Gelders, G. ;
Heneka, Michael T. ;
Hoeijmakers, L. ;
Hoffmann, A. ;
Iaccarino, L. ;
Jahnert, S. ;
Kuhbandner, K. ;
Landreth, G. ;
Lonnemann, N. ;
Loeschmann, P. A. ;
McManus, R. M. ;
Paulus, A. ;
Reemst, K. ;
Sanchez-Caro, J. M. ;
Tiberi, A. ;
Van der Perren, A. ;
Vautheny, A. ;
Venegas, C. ;
Webers, A. ;
Weydt, P. ;
Wijasa, T. S. ;
Xiang, X. ;
Yang, Y. .
CNS DRUGS, 2017, 31 (12) :1057-1082
[4]   Relative frequencies of Alzheimer disease, Lewy body, vascular and frontotemporal dementia, and hippocampal sclerosis in the state of Florida Brain Bank [J].
Barker, WW ;
Luis, CA ;
Kashuba, A ;
Luis, M ;
Harwood, DG ;
Loewenstein, D ;
Waters, C ;
Jimison, P ;
Shepherd, E ;
Sevush, S ;
Graff-Radford, N ;
Newland, D ;
Todd, M ;
Miller, B ;
Gold, M ;
Heilman, K ;
Doty, L ;
Goodman, I ;
Robinson, B ;
Pearl, G ;
Dickson, D ;
Duara, R .
ALZHEIMER DISEASE & ASSOCIATED DISORDERS, 2002, 16 (04) :203-212
[5]   Peripheral and central immune system crosstalk in Alzheimer disease - a research prospectus [J].
Bettcher, Brianne M. ;
Tansey, Malu G. ;
Dorothee, Guillaume ;
Heneka, Michael T. .
NATURE REVIEWS NEUROLOGY, 2021, 17 (11) :689-701
[6]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[7]   Female-specific risk of Alzheimer's disease is associated with tau phosphorylation processes: A transcriptome-wide interaction analysis [J].
Caceres, Alejandro ;
Gonzalez, Juan R. .
NEUROBIOLOGY OF AGING, 2020, 96 :104-108
[8]  
Chen BB, 2018, METHODS MOL BIOL, V1711, P243, DOI 10.1007/978-1-4939-7493-1_12
[9]   RORγt expression in mature TH17 cells safeguards their lineage specification by inhibiting conversion to TH2 cells [J].
Chi, Xinxin ;
Jin, Wei ;
Zhao, Xiaohong ;
Xie, Tian ;
Shao, Jing ;
Bai, Xue ;
Jiang, Yu ;
Wang, Xiaohu ;
Dong, Chen .
SCIENCE ADVANCES, 2022, 8 (34)
[10]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297