A singular system involving mixed local and non-local operators

被引:0
作者
Gouasmia, Abdelhamid [1 ,2 ,3 ]
机构
[1] Larbi Ben MHidi Univ, Dept Math & Comp Sci, Oum El Bouaghi 4000, Algeria
[2] Ecole Normale Super, Lab Equat Partielles Non lineaires & Hist Math, BP 92, Vieux Kouba, Algiers 16050, Algeria
[3] Mohamed Cherif Messaadia Univ, Fac Sci & Technol, Dept Math, POB 1553, Souk Ahras 41000, Algeria
来源
BOUNDARY VALUE PROBLEMS | 2024年 / 2024卷 / 01期
关键词
Singular systems; Local and non-local operator; Regularity results; Schauder's fixed-point Theorem; Sub-homogeneous problems; Sub-solutions and super-solutions; POSITIVE SOLUTIONS; DISPERSAL; EVOLUTION;
D O I
10.1186/s13661-024-01937-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article sets forth results on the existence, non-existence, uniqueness, and regularities properties, as well as boundary behavior of solutions for singular systems involving mixed local and non-local elliptic operators (see System (S) below). More precisely, we first establish a new weak comparison principle for a singular equation. Afterward, we discuss the non-existence of positive classical solutions, as well as construct suitable ordered pairs of sub-solutions and super-solutions. This allows us to obtain the existence of a pair of positive weak solutions for System (S) by employing Schauder's fixed-point theorem in the associated conical shell. Finally, we adapt a method of Krasnoselsky to establish the uniqueness of such a positive pair of solutions.
引用
收藏
页数:36
相关论文
共 32 条
  • [1] Ambrosio V., 2021, FRONTIERS ELLIPTIC P, P662, DOI [10.1007/978-3-030-60220-8, DOI 10.1007/978-3-030-60220-8]
  • [2] Combined effects in mixed local-nonlocal stationary problems
    Arora, Rakesh
    Radulescu, Vicentiu D.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023,
  • [3] Regularity results for a class of nonlinear fractional Laplacian and singular problems
    Arora, Rakesh
    Giacomoni, Jacques
    Warnault, Guillaume
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 28 (03):
  • [4] Parametric singular double phase Dirichlet problems
    Bai, Yunru
    Papageorgiou, Nikolaos S.
    Zeng, Shengda
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [5] Mixed local and nonlocal elliptic operators: regularity and maximum principles
    Biagi, Stefano
    Dipierro, Serena
    Valdinoci, Enrico
    Vecchi, Eugenio
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (03) : 585 - 629
  • [6] Bisci GM, 2016, ENCYCLOP MATH APPL, V162
  • [7] Brezis H., 2010, Functional Analysis, Sobolev Spaces and Partial Differential Equations, DOI DOI 10.1007/978-0-387-70914-7
  • [8] A system of local/nonlocal p-Laplacians: The eigenvalue problem and its asymptotic limit as p → ∞
    Buccheri, S.
    da Silva, J., V
    de Miranda, L. H.
    [J]. ASYMPTOTIC ANALYSIS, 2022, 128 (02) : 149 - 181
  • [9] Singular quasilinear elliptic systems involving gradient terms
    Candito, Pasquale
    Livrea, Roberto
    Moussaoui, Abdelkrim
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 55
  • [10] Nonlocal problems with singular nonlinearity
    Canino, Annamaria
    Montoro, Luigi
    Sciunzi, Berardino
    Squassina, Marco
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2017, 141 (03): : 223 - 250