Harnessing point defects for advanced Cu-based catalysts in electrochemical CO2 reduction

被引:0
作者
Tian, Jia [1 ]
Huang, Huiting [1 ]
Ratova, Marina [2 ]
Wu, Dan [1 ]
机构
[1] Wuhan Inst Technol, Sch Mat Sci & Engn, Key Lab Green Chem Engn Proc, Hubei Key Lab Plasma Chem & New Mat,Minist Educ, Wuhan 430205, Hubei, Peoples R China
[2] Manchester Metropolitan Univ, Fac Sci & Engn, Chester St, Manchester M1 5GD, England
基金
中国国家自然科学基金;
关键词
Cu-based electrocatalysts; CO; 2; reduction; Point defects; Vacancy; Heteroatom doping; ELECTROREDUCTION; STABILITY; VACANCIES; ELECTRODE; PRODUCTS; STRATEGY; ENHANCE;
D O I
10.1016/j.mser.2025.100979
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Cu-based electrocatalysts are pivotal for converting CO2 into valuable C2+ products, yet their efficiency, selectivity, and durability remains critical challenges. This review systematically examines point defect engineering, encompassing cationic/anionic vacancies and heteroatom doping as a strategic approach to optimize Cu-based catalysts for electrochemical CO2 reduction (CO2R). Vacancy defects primarily modulate electronic structures to enhance CO2 adsorption and stabilize intermediates, while heteroatom doping tailors active sites and lowers energy barriers for C-C coupling. Crucially, synergistic interactions between vacancies and dopants amplify charge transfer and intermediate stabilization, transcending the limitations of isolated defects. Challenges in defect density control, spatial uniformity, and operational stability are critically discussed. Future research should prioritize operando characterization to resolve dynamic defect behavior, multicomponent defect systems to exploit synergistic effects, and machine learning-driven designs to accelerate catalyst discovery. By integrating mechanistic insights into defect engineering, this work provides a roadmap for developing efficient, selective, and durable Cu-based catalysts, advancing sustainable CO2 utilization to address global energy and environmental imperatives.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts
    Ma, Wenchao
    He, Xiaoyang
    Wang, Wei
    Xie, Shunji
    Zhang, Qinghong
    Wang, Ye
    CHEMICAL SOCIETY REVIEWS, 2021, 50 (23) : 12897 - 12914
  • [32] Recent Advances of Core-Shell Cu-Based Catalysts for the Reduction of CO2 to C2+ Products
    Li, Lamei
    Su, Jiaqi
    Lu, Jianmei
    Shao, Qi
    CHEMISTRY-AN ASIAN JOURNAL, 2023, 18 (05)
  • [33] The Development of Uncalcined Cu-Based Catalysts by Liquid Reduction Method for CO2 Hydrogenation to Methanol
    Xiaosu Dong
    Shuxin Ma
    Peng Gao
    Catalysis Letters, 2023, 153 : 1696 - 1707
  • [34] Engineering strategies in the rational design of Cu-based catalysts for electrochemical CO2 reduction: from doping of elements to defect creation
    Yousaf, Sheraz
    Ahmad, Iqbal
    Farooq Warsi, Muhammad
    Ali, Asad
    MATERIALS ADVANCES, 2024, 5 (20): : 7891 - 7978
  • [35] Machine Learning-Assisted Screening of Cu-Based Trimetallic Catalysts for Electrochemical Conversion of CO2 to CO
    Xiong, Bo
    Liu, Jing
    Yang, Yingju
    Liu, Wei
    Chen, Man
    Bai, Hongcun
    ENERGY & FUELS, 2023, 38 (03) : 2074 - 2083
  • [36] Regulation of the activity, selectivity, and durability of Cu-based electrocatalysts for CO2 reduction
    Chang Liu
    Jun Gong
    Zeyu Gao
    Li Xiao
    Gongwei Wang
    Juntao Lu
    Lin Zhuang
    Science China Chemistry, 2021, 64 : 1660 - 1678
  • [37] Tailoring grain boundaries and doping on Cu-based electrocatalyst for efficient CO2 reduction reaction
    Zhu, Fangfang
    Shao, Lei
    Wang, Jiao
    Deng, Shuang
    Hao, Jinhui
    Shi, Weidong
    APPLIED SURFACE SCIENCE, 2024, 645
  • [38] Recent Developments in Copper-Based Catalysts for Enhanced Electrochemical CO2 Reduction
    Yesupatham, Manova Santhosh
    Honnappa, Brahmari
    Agamendran, Nithish
    Kumar, Sai Yeswanth
    Chellasamy, Gayathri
    Govindaraju, Saravanan
    Yun, Kyusik
    Selvam, N. Clament Sagaya
    Maruthapillai, Arthanareeswari
    Li, Wei
    Sekar, Karthikeyan
    ADVANCED SUSTAINABLE SYSTEMS, 2024, 8 (06)
  • [39] The Role of Phase Mixing Degree in Promoting C-C Coupling in Electrochemical CO2 Reduction Reaction on Cu-based Catalysts
    Wang, Yinuo
    Yang, Fei
    Xu, Hongming
    Jang, Juhee
    Delmo, Ernest P.
    Qiu, Xiaoyi
    Ying, Zhehan
    Gao, Ping
    Zhu, Shangqian
    Gu, M. Danny
    Shao, Minhua
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (16)
  • [40] Tunable Selectivity for Electrochemical CO2 Reduction by Bimetallic Cu-Sn Catalysts: Elucidating the Roles of Cu and Sn
    Zhang, Maolin
    Zhang, Zedong
    Zhao, Zhenghang
    Huang, Hao
    Anjum, Dalaver H.
    Wang, Dingsheng
    He, Jr-hau
    Huang, Kuo-Wei
    ACS CATALYSIS, 2021, 11 (17): : 11103 - 11108