RNA-seq validation of microRNA expression signatures for precision melanoma diagnosis and prognostic stratification

被引:1
作者
Love, Christopher G. [1 ]
Coombs, Lauren [2 ]
Van Laar, Ryan [1 ,2 ]
机构
[1] Geneseq Biosci, Melbourne, Vic, Australia
[2] Australian Clin Labs, Clayton, Vic, Australia
关键词
RNA-seq; Melanoma; MicroRNA signatures; Cancer; Precision medicine; Gene expression;
D O I
10.1186/s12920-024-02028-w
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background New diagnostic tools are needed to improve the diagnosis and risk stratification of cutaneous melanoma. Disease-specific microRNA signatures have been previously described via NanoString profiling of solid biopsy tissue and plasma. This study validated these signatures via next-generation sequencing technology and compared their performance against clinical metrics and other published melanoma signatures. Methods RNA from 64 plasma and 60 FFPE biopsy samples from individuals with invasive melanoma or related benign/control phenotypes was extracted and enriched for microRNA. RNA sequencing was performed to compute MEL38/MEL12 signature scores. The results were evaluated with published NanoString and RNA sequencing datasets, comprising 548 solid tissue samples and 217 plasma samples, to predict disease status and patient outcome. Results The MEL38 diagnostic signature classifies patients into discrete diagnostic groups via RNA sequencing in either solid tissue or plasma (P < 0.001). In solid tissue, the prognostic MEL12 signature stratifies patients into low-, intermediate- and high-risk groups, independent of clinical covariates. The hazard ratios for 10-year overall survival, based on observed survival intervals, were 2.2 (MEL12 high-risk vs low-risk, P < 0.001) and 1.8 (intermediate-risk vs low-risk, P < 0.001), outperforming other published prognostic models. MEL12 also exhibited prognostic significance in the plasma of 42 patients with invasive disease. Conclusions The MEL38 and MEL12 signatures can be assessed in either solid tissue or plasma using RNA-seq and are strong predictors of disease state and patient outcome. Compared with other genomic methods, MEL12 was shown to be the strongest predictor of poor prognosis. MicroRNA expression profiling offers objective, accurate genomic information about a patient's likelihood of invasive melanoma and prognosis.
引用
收藏
页数:12
相关论文
共 29 条
  • [1] Genomic Classification of Cutaneous Melanoma
    Akbani, Rehan
    Akdemir, Kadir C.
    Aksoy, B. Arman
    Albert, Monique
    Ally, Adrian
    Amin, Samirkumar B.
    Arachchi, Harindra
    Arora, Arshi
    Auman, J. Todd
    Ayala, Brenda
    Baboud, Julien
    Balasundaram, Miruna
    Balu, Saianand
    Barnabas, Nandita
    Bartlett, John
    Bartlett, Pam
    Bastian, Boris C.
    Baylin, Stephen B.
    Behera, Madhusmita
    Belyaev, Dmitry
    Benz, Christopher
    Bernard, Brady
    Beroukhim, Rameen
    Bir, Natalie
    Black, Aaron D.
    Bodenheimer, Tom
    Boice, Lori
    Boland, Genevieve M.
    Bono, Riccardo
    Bootwalla, Moiz S.
    Bosenberg, Marcus
    Bowen, Jay
    Bowlby, Reanne
    Bristow, Christopher A.
    Brockway-Lunardi, Laura
    Brooks, Denise
    Brzezinski, Jakub
    Bshara, Wiam
    Buda, Elizabeth
    Burns, William R.
    Butterfield, Yaron S. N.
    Button, Michael
    Calderone, Tiffany
    Cappellini, Giancarlo Antonini
    Carter, Candace
    Carter, Scott L.
    Cherney, Lynn
    Cherniack, Andrew D.
    Chevalier, Aaron
    Chin, Lynda
    [J]. CELL, 2015, 161 (07) : 1681 - 1696
  • [2] sRNAbench and sRNAtoolbox 2022 update: accurate miRNA and sncRNA profiling for model and non-model organisms
    Aparicio-Puerta, Ernesto
    Gomez-Martin, Cristina
    Giannoukakos, Stavros
    Maria Medina, Jose
    Scheepbouwer, Chantal
    Garcia-Moreno, Adrian
    Carmona-Saez, Pedro
    Fromm, Bastian
    Pegtel, Michiel
    Keller, Andreas
    Antonio Marchal, Juan
    Hackenberg, Michael
    [J]. NUCLEIC ACIDS RESEARCH, 2022, 50 (W1) : W710 - W717
  • [3] Semi-supervised methods to predict patient survival from gene expression data
    Bair, E
    Tibshirani, R
    [J]. PLOS BIOLOGY, 2004, 2 (04) : 511 - 522
  • [4] Integrated Assessment of Circulating Cell-Free MicroRNA Signatures in Plasma of Patients with Melanoma Brain Metastasis
    Bustos, Matias A.
    Tran, Kevin D.
    Rahimzadeh, Negin
    Gross, Rebecca
    Lin, Selena Y.
    Shoji, Yoshiaki
    Murakami, Tomohiro
    Boley, Christine L.
    Tran, Linh T.
    Cole, Hunter
    Kelly, Daniel F.
    O'Day, Steven
    Hoon, Dave S. B.
    [J]. CANCERS, 2020, 12 (06) : 1 - 24
  • [5] LIBSVM: A Library for Support Vector Machines
    Chang, Chih-Chung
    Lin, Chih-Jen
    [J]. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
  • [6] A cross comparison of technologies for the detection of microRNAs in clinical FFPE samples of hepatoblastoma patients
    Chatterjee, Aniruddha
    Leichter, Anna L.
    Fan, Vicky
    Tsai, Peter
    Purcell, Rachel V.
    Sullivan, Michael J.
    Eccles, Michael R.
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [7] Pathologists' diagnosis of invasive melanoma and melanocytic proliferations: observer accuracy and reproducibility study
    Elmore, Joann G.
    Barnhill, Raymond L.
    Elder, David E.
    Longton, Gary M.
    Pepe, Margaret S.
    Reisch, Lisa M.
    Carney, Patricia A.
    Titus, Linda J.
    Nelson, Heidi D.
    Onega, Tracy
    Tosteson, Anna N. A.
    Weinstock, Martin A.
    Knezevich, Stevan R.
    Piepkorn, Michael W.
    [J]. BMJ-BRITISH MEDICAL JOURNAL, 2017, 357
  • [8] MicroRNAs in melanoma development and resistance to target therapy
    Fattore, Luigi
    Costantini, Susan
    Malpicci, Debora
    Ruggiero, Ciro Francesco
    Ascierto, Paolo Antonio
    Croce, Carlo M.
    Mancini, Rita
    Ciliberto, Gennaro
    [J]. ONCOTARGET, 2017, 8 (13) : 22262 - 22278
  • [9] Tumour gene expression signature in primary melanoma predicts long-term outcomes
    Garg, Manik
    Couturier, Dominique-Laurent
    Nsengimana, Jeremie
    Fonseca, Nuno A.
    Wongchenko, Matthew
    Yan, Yibing
    Lauss, Martin
    Jonsson, Goeran B.
    Newton-Bishop, Julia
    Parkinson, Christine
    Middleton, Mark R.
    Bishop, D. Timothy
    McDonald, Sarah
    Stefanos, Nikki
    Tadross, John
    Vergara, Ismael A.
    Lo, Serigne
    Newell, Felicity
    Wilmott, James S.
    Thompson, John F.
    Long, Georgina V.
    Scolyer, Richard A.
    Corrie, Pippa
    Adams, David J.
    Brazma, Alvis
    Rabbie, Roy
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [10] A METHOD OF COMPARING THE AREAS UNDER RECEIVER OPERATING CHARACTERISTIC CURVES DERIVED FROM THE SAME CASES
    HANLEY, JA
    MCNEIL, BJ
    [J]. RADIOLOGY, 1983, 148 (03) : 839 - 843