Machine learning-based prediction and optimization of plasma-catalytic dry reforming of methane in a dielectric barrier discharge reactor

被引:2
作者
Li, Jiayin [1 ]
Xu, Jing [2 ]
Rebrov, Evgeny [3 ,4 ]
Bogaerts, Annemie [1 ]
机构
[1] Univ Antwerp, Dept Chem, Res Grp PLASMANT, B-2610 Antwerp, Belgium
[2] Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan 430074, Hubei, Peoples R China
[3] Univ Warwick, Sch Engn, Coventry CV4 7AL, England
[4] Eindhoven Univ Technol, Dept Chem Engn & Chem, POB 513, NL-5600 MB Eindhoven, Netherlands
基金
欧洲研究理事会;
关键词
Plasma catalysis; Dry reforming of methane; Machine learning; Process optimization; Syngas production; CONVERSION; DRIVEN;
D O I
10.1016/j.cej.2025.159897
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We developed an innovative machine learning (ML) model, including a supervised learning (SL) and reinforcement learning (RL) model, to predict and optimize the plasma-catalytic dry reformation of methane (DRM) over Ni/Al2O3 catalysts in a dielectric barrier discharge (DBD) reactor based upon experimental data. To tackle its intricate and non-linear characteristics, the SL model uses artificial neural networks (ANN) to accurately predict the performance, achieving excellent consistency with the experimental results. The RL model subsequently investigates the optimal optimization policy, namely starting with a coarse tuning of the more influential parameters, followed by fine-tuning of the less important parameters, to obtain the best performance. The optimal results show that a discharge power at lowest bond (i.e., 20 W) but CO2/CH4 ratio at highest bond (i.e., 1.5) result in the minimum energy cost (21 eV/molec), validated by our SL model and experimental data. Furthermore, we also investigated the simultaneous optimization of total conversion and energy cost, resulting in a maximum total conversion of 36 %, combined with a minimum energy cost of 34 eV/molec, at a Ni loading of 9.5 wt%, discharge power of 60 W, and total flow rate of 74 mL/min. Our ML model showcases an impressive capacity to derive advantageous insights from existing datasets, thereby advancing and optimizing plasma- catalytic chemical processes.
引用
收藏
页数:11
相关论文
共 55 条
[1]   Non-Thermal Plasma for Process and Energy Intensification in Dry Reforming of Methane [J].
Abiev, Rufat Sh ;
Sladkovskiy, Dmitry A. ;
Semikin, Kirin, V ;
Murzin, Dmitry Yu ;
Rebrov, Evgeny, V .
CATALYSTS, 2020, 10 (11) :1-41
[2]   Plasma-catalytic conversion of CO2 to CO over binary metal oxide catalysts at low temperatures [J].
Ashford, Bryony ;
Wang, Yaolin ;
Poh, Chee-Kok ;
Chen, Luwei ;
Tu, Xin .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 276
[3]   Comparison of dry reforming of methane in low temperature hybrid plasma-catalytic corona with thermal catalytic reactor over Ni/γ-Al2O3 [J].
Aziznia, Amin ;
Bozorgzadeh, Hamid Reza ;
Seyed-Matin, Naser ;
Baghalha, Morteza ;
Mohamadalizadeh, Ali .
JOURNAL OF NATURAL GAS CHEMISTRY, 2012, 21 (04) :466-475
[4]   A principal component analysis assisted machine learning modeling and validation of methanol formation over Cu-based catalysts in direct CO2 hydrogenation [J].
Bhardwaj, Aakash ;
Ahluwalia, Akshdeep Singh ;
Pant, Kamal Kishore ;
Upadhyayula, Sreedevi .
SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 324
[5]   Avoiding solid carbon deposition in plasma-based dry reforming of methane [J].
Biondo, Omar ;
Van Deursen, Cas F. A. M. ;
Hughes, Ashley ;
van de Steeg, Alex ;
Bongers, Waldo ;
van de Sanden, M. C. M. ;
van Rooij, Gerard ;
Bogaerts, Annemie .
GREEN CHEMISTRY, 2023, 25 (24) :10485-10497
[6]   The 2020 plasma catalysis roadmap [J].
Bogaerts, Annemie ;
Tu, Xin ;
Whitehead, J. Christopher ;
Centi, Gabriele ;
Lefferts, Leon ;
Guaitella, Olivier ;
Azzolina-Jury, Federico ;
Kim, Hyun-Ha ;
Murphy, Anthony B. ;
Schneider, William F. ;
Nozaki, Tomohiro ;
Hicks, Jason C. ;
Rousseau, Antoine ;
Thevenet, Frederic ;
Khacef, Ahmed ;
Carreon, Maria .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (44)
[7]   Plasma Technology: An Emerging Technology for Energy Storage [J].
Bogaerts, Annemie ;
Neyts, Erik C. .
ACS ENERGY LETTERS, 2018, 3 (04) :1013-1027
[8]   Plasma-based conversion of CO2: current status and future challenges [J].
Bogaerts, Annemie ;
Kozak, Tomas ;
van Laer, Koen ;
Snoeckx, Ramses .
FARADAY DISCUSSIONS, 2015, 183 :217-232
[9]   Foundations of machine learning for low-temperature plasmas: methods and case studies [J].
Bonzanini, Angelo D. ;
Shao, Ketong ;
Graves, David B. ;
Hamaguchi, Satoshi ;
Mesbah, Ali .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2023, 32 (02)
[10]   Machine learning-driven optimization of plasma-catalytic dry reforming of methane [J].
Cai, Yuxiang ;
Mei, Danhua ;
Chen, Yanzhen ;
Bogaerts, Annemie ;
Tu, Xin .
JOURNAL OF ENERGY CHEMISTRY, 2024, 96 :153-163