Machine learning-based prediction and optimization of plasma-catalytic dry reforming of methane in a dielectric barrier discharge reactor

被引:0
作者
Li, Jiayin [1 ]
Xu, Jing [2 ]
Rebrov, Evgeny [3 ,4 ]
Bogaerts, Annemie [1 ]
机构
[1] Univ Antwerp, Dept Chem, Res Grp PLASMANT, B-2610 Antwerp, Belgium
[2] Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan 430074, Hubei, Peoples R China
[3] Univ Warwick, Sch Engn, Coventry CV4 7AL, England
[4] Eindhoven Univ Technol, Dept Chem Engn & Chem, POB 513, NL-5600 MB Eindhoven, Netherlands
基金
欧洲研究理事会;
关键词
Plasma catalysis; Dry reforming of methane; Machine learning; Process optimization; Syngas production; CONVERSION; DRIVEN;
D O I
10.1016/j.cej.2025.159897
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We developed an innovative machine learning (ML) model, including a supervised learning (SL) and reinforcement learning (RL) model, to predict and optimize the plasma-catalytic dry reformation of methane (DRM) over Ni/Al2O3 catalysts in a dielectric barrier discharge (DBD) reactor based upon experimental data. To tackle its intricate and non-linear characteristics, the SL model uses artificial neural networks (ANN) to accurately predict the performance, achieving excellent consistency with the experimental results. The RL model subsequently investigates the optimal optimization policy, namely starting with a coarse tuning of the more influential parameters, followed by fine-tuning of the less important parameters, to obtain the best performance. The optimal results show that a discharge power at lowest bond (i.e., 20 W) but CO2/CH4 ratio at highest bond (i.e., 1.5) result in the minimum energy cost (21 eV/molec), validated by our SL model and experimental data. Furthermore, we also investigated the simultaneous optimization of total conversion and energy cost, resulting in a maximum total conversion of 36 %, combined with a minimum energy cost of 34 eV/molec, at a Ni loading of 9.5 wt%, discharge power of 60 W, and total flow rate of 74 mL/min. Our ML model showcases an impressive capacity to derive advantageous insights from existing datasets, thereby advancing and optimizing plasma- catalytic chemical processes.
引用
收藏
页数:11
相关论文
共 55 条
  • [1] Pakhare D., Spivey J., A review of dry (CO<sub>2</sub>) reforming of methane over noble metal catalysts, Chem. Soc. Rev., 43, pp. 7813-7837, (2014)
  • [2] Kathiraser Y., Oemar U., Saw E.T., Li Z., Kawi S., Kinetic and mechanistic aspects for CO<sub>2</sub> reforming of methane over Ni based catalysts, Chem. Eng. J., 278, pp. 62-78, (2015)
  • [3] Zhao H., Yu R., Ma S., Xu K., Chen Y., Jiang K., Fang Y., Zhu C., Liu X., Tang Y., Wu L., Wu Y., Jiang Q., He P., Liu Z., Tan L., The role of Cu1–O<sub>3</sub> species in single-atom Cu/ZrO<sub>2</sub> catalyst for CO<sub>2</sub> hydrogenation, Nat. Catal., 5, pp. 818-831, (2022)
  • [4] Song Y., Ozdemir E., Ramesh S., Adishev A., Subramanian S., Harale A., Albuali M., Fadhel B.A., Jamal A., Moon D., Choi S.H., Yavuz C.T., Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgO, Science, 367, pp. 777-781, (2020)
  • [5] Lu W., Cao Q., Xu B., Adidharma H., Gasem K., Argyle M., Zhang F., Zhang Y., Fan M., A new approach of reduction of carbon dioxide emission and optimal use of carbon and hydrogen content for the desired syngas production from coal, J. Clean. Prod., 265, (2020)
  • [6] George A., Shen B., Craven M., Wang Y., Kang D., Wu C., Tu X., A review of non-thermal plasma technology: a novel solution for CO<sub>2</sub> conversion and utilization, Renew. Sustain. Energy Rev., 135, (2021)
  • [7] Snoeckx R., Bogaerts A., Plasma technology – a novel solution for CO<sub>2</sub> conversion?, Chem. Soc. Rev., 46, pp. 5805-5863, (2017)
  • [8] Nguyen D.B., Saud S., Trinh Q.T., An H., Nguyen N.-T., Trinh Q.H., Do H.T., Mok Y.S., Lee W.G., Generation of multiple jet capillaries in advanced dielectric barrier discharge for large-scale plasma jets, Plasma Chem. Plasma P., 43, pp. 1475-1488, (2023)
  • [9] Osorio-Tejada J., Escriba-Gelonch M., Vertongen R., Bogaerts A., Hessel V., CO<sub>2</sub> conversion to CO via plasma and electrolysis: a techno-economic and energy cost analysis, Energy Environ. Sci., 17, pp. 5833-5853, (2024)
  • [10] Bogaerts A., Tu X., Whitehead J.C., Centi G., Lefferts L., Guaitella O., Azzolina-Jury F., Kim H.-H., Murphy A.B., Schneider W.F., Nozaki T., Hicks J.C., Rousseau A., Thevenet F., Khacef A., Carreon M., The 2020 plasma catalysis roadmap, J. Phys. D: Appl. Phys., 53, (2020)